347 research outputs found

    The cubic period-distance relation for the Kater reversible pendulum

    Full text link
    We describe the correct cubic relation between the mass configuration of a Kater reversible pendulum and its period of oscillation. From an analysis of its solutions we conclude that there could be as many as three distinct mass configurations for which the periods of small oscillations about the two pivots of the pendulum have the same value. We also discuss a real compound Kater pendulum that realizes this property.Comment: 25 pages 4figure

    Vanishing of cosmological constant in nonfactorizable geometry

    Get PDF
    We generalize the results of Randall and Sundrum to a wider class of four-dimensional space-times including the four-dimensional Schwarzschild background and de Sitter universe. We solve the equation for graviton propagation in a general four dimensional background and find an explicit solution for a zero mass bound state of the graviton. We find that this zero mass bound state is normalizable only if the cosmological constant is strictly zero, thereby providing a dynamical reason for the vanishing of cosmological constant within the context of this model. We also show that the results of Randall and Sundrum can be generalized without any modification to the Schwarzschild background.Comment: 8 Pages(expanded version), Accepted in Phys. Rev.

    Prevalence of Escherichia coli O157:H7 in cow-calf herds in Kansas

    Get PDF
    Fecal samples from cows and calves and samples of water sources were collected monthly for 8 months from 10 Kansas cow-calf farms to determine the prevalence of E. coli O157:H7. The bacterium was found in 8% of fecal samples from cows that were within 24 hours of calving, 1.4% of fecal samples from cows which were not within 24 hours of calving, 1.4% of calf fecal samples, and 1.5% of water samples. E. coli O157:H7 was identified from at least one sample on all farms

    Majorana Neutrino, the Size of Extra Dimensions, and Neutrinoless Double Beta Decay

    Full text link
    The problem of Majorana neutrino mass generated in Arkani-Hamed--Dimopoulos-Dvali model with n extra spatial dimensions is discussed. Taking into account constraints on neutrino masses coming from cosmological observations, it is possible to obtain lower limits on the size of extra dimensions as large as 10^{-6} mm. In the case of n=4 it is easy to lower the fundamental scale of gravity from the Planck energy to electroweak scale \~TeV without imposing any additional constraints. A link between the half-life of neutrinoless double beta decay and the size of extra dimensions is discussed.Comment: 5 pages, 1 figure, using RevTEX. Units conversion correcte

    Lensing at cosmological scales: a test of higher dimensional gravity

    Full text link
    Recent developments in gravitational lensing astronomy have paved the way to genuine mappings of the gravitational potential at cosmological scales. We stress that comparing these data with traditional large scale structure surveys will provide us with a test of gravity at such scales. These constraints could be of great importance in the framework of higher dimensional cosmological models.Comment: 4 pages, latex, 3 figure

    Brane Cosmology in the Background of D-Brane with NS B Field

    Full text link
    We study the cosmological evolution of the four-dimensional universe on the probe D3-brane in geodesic motion in the curved background of the source Dp-brane with non-zero NS B field. The Friedman equations describing the expansion of the brane universe are obtained and analyzed for various limits. We elaborate on corrections to the cosmological evolution due to nonzero NS B field.Comment: 13 pages, LaTeX, revised version with minor corrections to appear in Phys. Rev.

    Transdimensional physics and inflation

    Get PDF
    Within the framework of a five-dimensional brane world with a stabilized radion, we compute the cosmological perturbations generated during inflation and show that the perturbations are a powerful tool to probe the physics of extra dimensions. While we find that the power spectrum of scalar perturbations is unchanged, we show that the existence of the fifth dimension is imprinted on the spectrum of gravitational waves generated during inflation. In particular, we find that the tensor perturbations receive a correction proportional to (HR)2(HR)^2, where HH is the Hubble expansion rate during inflation and RR is the size of the extra dimension. We also generalize our findings to the case of several extra dimensions as well as to warped geometries.Comment: RevTeX file, 30 pages, 1 figure. Final version to appear in PR

    Cosmological Effects of Radion Oscillations

    Full text link
    We show that the redshift of pressureless matter density due to the expansion of the universe generically induces small oscillations in the stabilized radius of extra dimensions (the radion field). The frequency of these oscillations is proportional to the mass of the radion and can have interesting cosmological consequences. For very low radion masses mbm_b (mb∌10−100H0≃10−32eVm_b\sim10-100 H_0\simeq10^{-32} eV) these low frequency oscillations lead to oscillations in the expansion rate of the universe. The occurrence of acceleration periods could naturally lead to a resolution of the coincidence problem, without need of dark energy. Even though this scenario for low radion mass is consistent with several observational tests it has difficulty to meet fifth force constraints. If viewed as an effective Brans-Dicke theory it predicts ω=−1+1D\omega=-1+\frac{1}{D} (DD is the number of extra dimensions), while experiments on scales larger than 1mm1mm imply ω>2500\omega>2500. By deriving the generalized Newtonian potential corresponding to a massive toroidally compact radion we demonstrate that Newtonian gravity is modified only on scales smaller than mb−1m_b^{-1}. Thus, these constraints do not apply for mb>10−3eVm_b>10^{-3} eV (high frequency oscillations) corresponding to scales less than the current experiments (0.3mm0.3mm). Even though these high frequency oscillations can not resolve the coincidence problem they provide a natural mechanism for dark matter generation. This type of dark matter has many similarities with the axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and some additional references include

    Bouncing pre-big bang on the brane

    Full text link
    A regular bouncing universe is obtained in the context of a dilaton-gravity brane world scenario. The scale factor starts in a contracting inflationary phase both in the Einstein and in the string frame, it then undergoes a bounce (due to interaction with the bulk Weyl tensor), and subsequently enters into a decelerated expanding era. This graceful exit is obtained at low curvature and low coupling, and without violating the Null Energy Condition.Comment: 16 pages, 3 figures; final version to be published on PRD. General improvement of section II (better specification of the matter content on the brane and discussion about the late time behavior), main results unchanged; 2 references adde

    Z boson pair production at LHC in a stabilized Randall-Sundrum scenario

    Get PDF
    We study the Z boson pair production at LHC in the Randall-Sundrum scenario with the Goldberger-Wise stabilization mechanism. It is shown that comprehensive account of the Kaluza-Klein graviton and radion effects is crucial to probe the model: The KK graviton effects enhance the cross section of gg→ZZg g \to Z Z on the whole so that the resonance peak of the radion becomes easy to detect, whereas the RS effects on the qqˉ→ZZq\bar{q} \to Z Z process are rather insignificant. The pTp_T and invariant-mass distributions are presented to study the dependence of the RS model parameters. The production of longitudinally polarized Z bosons, to which the SM contributions are suppressed, is mainly due to KK gravitons and the radion, providing one of the most robust methods to signal the RS effects. The 1σ1 \sigma sensitivity bounds on (Λπ,mϕ)(\Lambda_\pi, m_\phi) with k/MPl=0.1k/M_{\rm Pl} =0.1 are also obtained such that the effective weak scale Λπ\Lambda_\pi of order 5 TeV can be experimentally probed.Comment: 28 pages, LaTex file, 18 eps figure
    • 

    corecore