84 research outputs found

    Remarks on the Coulomb and Covariant Gauges in Finite Temperature QED

    Get PDF
    We compare the use of the Coulomb gauge in finite temperature QED with a recently proposed prescription for covariant gauges, in which only the transverse photon degrees of freedom are thermalized. Using the Landau rule as a guide, we clarify the relation between the retarded electron self-energy and the elements of the self-energy matrix in the real-time formulation of . The general results are illustrated by means of the one-loop expressions for the electron self-energy in a QED plasma.Comment: LaTeX, 10 pages, no figures; to be published in Phys. Lett.

    The electromagnetic vertex of neutrinos in an electron background and a magnetic field

    Full text link
    We study the electromagnetic vertex function of a neutrino that propagates in an electron background in the presence of a static magnetic field. The structure of the vertex function under the stated conditions is determined and it is written down in terms of a minimal and complete set of tensors. The one-loop expressions for all the form factors is given, up to terms that are linear in the magnetic field, and the approximate integral formulas that hold in the long wavelength limit are obtained. We discuss the physical interpretation of some of the form factors and their relation with the concept of the neutrino induced charge. The neutrino acquires a longitudinal and a transverse charge, due to the fact that the form factors depend on the transverse and longitudinal components of the photon momentum independently. We compute those form factors explicitly in various limiting cases and find that the longitudinal and transverse charge are the same for the case of a non-relativistic electron gas, but not otherwise.Comment: 18 pages. Revtex4, axodra

    Axial vector current in an electromagnetic field and low-energy neutrino-photon interactions

    Full text link
    An expression for the axial vector current in a strong, slowly varying electromagnetic field is obtained. We apply this expression to the construction of the effective action for low-energy neutrino-photon interactions.Comment: 6 pages, references updated, final version to appear in Phys. Rev.

    Weak and strong disjunction in possibilistic asp

    Get PDF
    Abstract. Possibilistic answer set programming (PASP) unites answer set programming (ASP) and possibilistic logic (PL) by associating certainty values with rules. The resulting framework allows to combine both non-monotonic reasoning and reasoning under uncertainty in a single framework. While PASP has been well-studied for possibilistic definite and possibilistic normal programs, we argue that the current semantics of possibilistic disjunctive programs are not entirely satisfactory. The problem is twofold. First, the treatment of negation-as-failure in existing approaches follows an all-or-nothing scheme that is hard to match with the graded notion of proof underlying PASP. Second, we advocate that the notion of disjunction can be interpreted in several ways. In particular, in addition to the view of ordinary ASP where disjunctions are used to induce a non-deterministic choice, the possibilistic setting naturally leads to a more epistemic view of disjunction. In this paper, we propose a semantics for possibilistic disjunctive programs, discussing both views on disjunction. Extending our earlier work, we interpret such programs as sets of constraints on possibility distributions, whose least specific solutions correspond to answer sets.

    Plasma wave instabilities induced by neutrinos

    Get PDF
    Quantum field theory is applied to study the interaction of an electron plasma with an intense neutrino flux. A connection is established between the field theory results and classical kinetic theory. The dispersion relation and damping rate of the plasma longitudinal waves are derived in the presence of neutrinos. It is shown that Supernova neutrinos are never collimated enough to cause non-linear effects associated with a neutrino resonance. They only induce neutrino Landau damping, linearly proportional to the neutrino flux and GF2G_{\mathrm{F}}^{2}.Comment: 18 pages, 3 figures, title and references correcte

    Chiral unitary approach to S-wave meson baryon scattering in the strangeness S=0 sector

    Get PDF
    We study the S-wave interaction of mesons with baryons in the strangeness S=0 sector in a coupled channel unitary approach. The basic dynamics is drawn from the lowest order meson baryon chiral Lagrangians. Small modifications inspired by models with explicit vector meson exchange in the t-channel are also considered. In addition the pi pi N channel is included and shown to have an important repercussion in the results, particularly in the isospin 3/2 sector.Comment: 23 pages, LaTeX, 21 figure

    Neutrino damping rate at finite temperature and density

    Get PDF
    A first principle derivation is given of the neutrino damping rate in real-time thermal field theory. Starting from the discontinuity of the neutrino self energy at the two loop level, the damping rate can be expressed as integrals over space phase of amplitudes squared, weighted with statistical factors that account for the possibility of particle absorption or emission from the medium. Specific results for a background composed of neutrinos, leptons, protons and neutrons are given. Additionally, for the real part of the dispersion relation we discuss the relation between the results obtained from the thermal field theory, and those obtained by the thermal average of the forward scattering amplitude.Comment: LaTex Document, 19 pages, 3 figure

    Structure of the Quark Propagator at High Temperature

    Get PDF
    In the high temperature, chirally invariant phase of QCD, the quark propagator is shown to have two sets of poles with different dispersion relations. A reflection property in momentum space relates all derivatives at zero-momentum of the particle and hole energies, the particle and hole damping rates, and the particle and hole residues. No use is made of perturbation theory.Comment: 8 pages, Latex twocolum

    Chiral dynamics of p-wave in K^- p and coupled states

    Get PDF
    We perform an evaluation of the p-wave amplitudes of meson-baryon scattering in the strangeness S=-1 sector starting from the lowest order chiral Lagrangians and introducing explicitly the Sigma^* field with couplings to the meson-baryon states obtained using SU(6) symmetry. The N/D method of unitarization is used, equivalent, in practice, to the use of the Bethe-Salpeter equation with a cut-off. The procedure leaves no freedom for the p-waves once the s-waves are fixed and thus one obtains genuine predictions for the p-wave scattering amplitudes, which are in good agreement with experimental results for differential cross sections, as well as for the width and partial decay widths of the Sigma^*(1385).Comment: LaTeX, 18 pages, 6 figure

    On a Neutrino Electroweak Radius

    Full text link
    We study a combination of amplitudes for neutrino scattering that can isolate a (gauge-invariant) difference of chirality-preserving neutrino electroweak radii for νμ\nu_\mu and ντ\nu_\tau. This involves both photon and ZμZ_\mu exchange contributions. It is shown that the construction singles out the contributions of the hypercharge gauge field BμB_{\mu} in the standard model. We comment on how gauge-dependent terms from the charge radii cancel with other terms in the relative electroweak radii defined.Comment: 16 pages, revtex with embedded figure
    • …
    corecore