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Abstract

We compare the use of the Coulomb gauge in �nite temperature

QED with a recently proposed prescription for covariant gauges, in

which only the transverse photon degrees of freedom are thermalized.

Using the Landau rule as a guide, we clarify the relation between the

retarded electron self-energy and the elements of the self-energy matrix

in the real-time formulation of . The general results are illustrated by

means of the one-loop expressions for the electron self-energy in a

QED plasma.
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In a theory with fermions and scalars only, the real-time formulation

of Finite Temperature Field Theory (FTFT) [1, 2] is quite straightforward.

However, the situation becomes more involved in gauge theories like QED.

For covariant gauges, the traditional approach has been to assume that all

the degrees of freedom of the gauge bosons are in thermal equilibrium[3].

Recently, Landsho� and Rebhan (LR)[4] showed that it is possible and even

simpler to assume that only the physical transverse components of the gauge

�eld are thermalized. The price is that the operator averages cannot be

expressed as traces and therefore some formulas of the standard formalism

do not apply anymore. Here, we elaborate this point by considering the

relation between the physical (retarded) fermion self-energy and the elements

of the self-energy matrix calculated with the Feynman rules of the theory.

The formulas we write for the dispersive and absorptive parts of the e�ective

self-energy satisfy the Landau rule and are the appropriate ones for those

situations where statistical averages cannot be represented by a trace.

Within the real-time formalism, the self-energy of a fermion in a thermal

background is a 2� 2 matrix, whose elements are de�ned by

i�21(z � y)�� = �h��(z)��(y)i ;
i�12(z � y)�� = h��(y)��(z)i ;
��11(z � y) = �21(z � y)�(z0 � y0) + �12(z � y)�(y0 � z0) ;

��22(z � y) = �21(z � y)�(y0 � z0) + �12(z � y)�(z0 � y0) ; (1)

where � and � are the fermion source �elds. In terms of them the interaction

Lagrangian is

Lint =  � + � ; (2)

and in particular, for QED � = �eA . The angle brackets in Eq. (1) stand

for the statistical average which, for any operator O is de�ned by

hOi =
P

ihij�OjiiP
ihij�jii

; (3)

where

� = e��H+
P

A
�AQA : (4)

H is the Hamiltonian of the system, the quantities QA are the (conserved)

charges that commute with H, 1=� is the temperature T , and the �A are the

chemical potentials that characterize the composition of the background.
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In a theory without gauge �elds the sums in Eq. (3) are over all the

states of the system and are unambiguous. The same is true for QED in

the Coulomb gauge. In this case, the Hilbert space contains only physical

states and the unphysical photon degrees of freedom disappear, along with

the associated question of wether they have a thermal distribution or not.

Then, the photon propagator takes the form

���
ab (k) = (�S��)[�(0)

ab (k) + �
(T )

ab (k)] ; (5)

with S�� given by

S�� = g�� +
1

�2
k�k� � !

�2
(u�k� + k�u�) ; (6)

where ! = k � u and � =
p
!2 � k2 are the energy and the magnitude of

the 3-momentum ~� of the photon in the frame where the medium is at rest.

We have introduced the vector u� representing the velocity 4-vector of the

background, with components (1;~0) in its own rest frame. In Eq. (5),

�
(0)

ab (k) =

0
B@

1
k2+i�

�2�i�(k2)�(�k � u)

�2�i�(k2)�(k � u) �1
k2�i�

1
CA ; (7)

and

�
(T )

ab (k) = �2�i�(k2) 1

e�jk�uj � 1

 
1 1

1 1

!
: (8)

It is useful to observe that

S��j!=� = � X
�=1;2

��(k; �)��(k; �)

������
!=�

; (9)

where the polarization vectors are given by ��(k; �) = (0; ~e(k; �)), with

~e(k; �) � ~k = 0.

The situation is not so obvious in a covariant gauge, because the set of

physical states does not span the whole space. In the traditional approach

the sum is made over a complete set of states and the unphysical degrees

of freedom acquire a thermal part. The covariant photon propagator has

the same form as in Eq. (5), but with S�� replaced by the tensor C�� whose
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explicit expresion depends on the gauge in which the theory is quantized. For

example, in the Feynman gauge C�� = g�� . On the other hand, according

to the prescription of LR, the sums in Eq (3) involve only physical states,

even when the theory is formulated in a covariant gauge. We will refer to

this approach as the mixed gauge, and in it the thermal part of the photon

propagator is the same as in the Coulomb gauge, while the zero-temperature

term has the structure that corresponds to a covariant gauge:

�
��

ab (k)
(mix) = (�C��)�

(0)

ab (k) + (�S��)�(T )

ab (k) : (10)

In that manner, this approach attempts to combine the simplicity of covari-

ant gauges for the vacuum part with the advantages of the (noncovariant)

Coulomb gauge for the temperature-dependent terms and in principle, may

be more convenient for calculational purposes. Nevertheless, as we discuss

next, the fact that thermal averages are made by summing over a subset of

states of the Hilbert space, has consequences that cannot be ignored.

In a medium, the e�ective �eld equation for a fermion with momentum

p� = ("; ~P ) is 1

(/p�m� �eff ) = 0 ; (11)

where

�eff (p) = �11(p) + �12(p) : (12)

As seen from Eq. (1) �eff corresponds to the retarded self-energy. Denoting

by Re�11 and Im�11 the dispersive and absorptive parts of �11:

Re�11 =
1

2
(�11 + 
0�

y
11
0) ;

Im�11 =
1

2i
(�11 � 
0�

y
11
0) ; (13)

with a similar decomposition for �eff , Eq. (12) is equivalent to

�r(p) = Re�11(p) ;

�i(p) = Im�11(p) � i�12(p) : (14)

We have used the fact that �12 is purely absorptive, as follows from its de�-

nition in (1). Now we verify that these formulas are related correctly by the

1Eq. (11) can be derived from the functional derivative of the e�ective action, by a

procedure similar to the one described in Ref. [2] for a scalar particle [5].
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spectral representation as required on the basis of fundamental principles[6].

By using the integral representation of the step function, the following ex-

pressions are easily derived from Eq. (1):

Re�11(p) =
1

2�i
P
Z
d"0

�21("
0; ~P )� �12("

0; ~P )

"� "0
;

Im�11(p) =
i

2
[�21(p) + �12(p)] ; (15)

where " = p � u. The second of these equations implies that �i, determined

according to Eq. (14), can be also computed by means of

�i(p) =
i

2
[�21(p) � �12(p)] ; (16)

that substituted in the formula for Re�11(p), gives

�r(p) =
�1
�
P
Z
d"0

�i("
0; ~P )

"� "0
; (17)

or, equivalently

�i(p) = Im�r("+ i�; ~P ) : (18)

Eqs.(17) and (18) are just the statement of the Landau rule within the present

context, and as the above reasoning shows, they will always be satis�ed if

the retarded self-energy is calculated from Eqs. (14) or (16).

The formulas for �r;i(p) in Eq. (14) have been obtained without reference

to any speci�c gauge, and are valid independently of the particular choice

used to compute the quantities �ab. However, when the sum in Eq. (3) runs

over all the states of the system, the thermal averages can be written as

a trace and some simpli�cation occurs. In those cases the cyclic property

implies that

�21(p) = �ex�12(p) ; (19)

and then, from Eqs. (15) and (16) the following familiar formula follows:

�i(p) =
Im�11(p)

1� 2nF (x)
=

�12(p)

2inF (x)
; (20)

where

nF (x) =
1

ex + 1
; (21)
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is the fermion distribution written in terms of the variable x = �"�� , with

� being the chemical potential.

In conclusion, the usual expressions given in Eq. (20) can be applied in

the Coulomb and covariant gauges, but not in approaches like the one of

LR, where thermal averages are not expressible as a trace 2. In the last case

we have to resort to Eq. (16), or equivalently to Eq. (14), to determine the

absorptive part of �eff On the contrary, if we insist in using (20), then the

Landau relation as given by (17) or (18), is not satis�ed.

It should be noticed that, when the relation of Eq. (19) is valid, then the

elements �ab can be parametrized in terms of a single quantity �. Then,

Eq. (12) can be written as

�eff (p) = �(p)�(") + �(p)�(�") ; (22)

as is customarily done in the real-time formulation. As an speci�c illustra-

tion of the the general results established here, we have considered the the

one-loop contributions to the self-energy of a (massless) electron in a QED

plasma, calculated both the Coulomb and the mixed gauge [7]. In what

follows we quote the main results of this calculation.

We begin with the Coulomb gauge. The 12 element of the self-energy

matrix is given by

�i�12(p) = (ie)(�ie)
Z

d4k

(2�)4
i�

��
21 (k)
�iS12(p

0)
� ; (23)

with p0 = p+ k. Using the expressions for the component �
��
21 (k) and �12(p)

of the photon an the electron bare propagators, we �nd

�12(p) =

 �ie2
4�2

!
nF (x)

Z
d3k

2!k

d3p0

2E0
(�S��
�/p0
�)�h

�(4)(p+ k � p0)(ne + n
) + �(4)(p � k � p0)(1 � ne + n
)

+�(4)(p � k + p0)(ne + n
) + �(4)(p + k + p0)(1 � ne + n
)
i
;

(24)

where p00 = E0 = j~p 0j and k0 = !k = j~kj. ne and n
 stand for the electron

and photon density distributions, while ne is the positron distribution, which

2For gauge bosons, the observation that the relation equivalent to (19) does not hold

in the mixed gauge is contained in the second paper of Ref. [4].
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is obtained from ne by changing the sign of �. Similarly,

�i�21(p) = (ie)(�ie)
Z

d4k

(2�)4
i���

12 (k)
�iS21(p
0)
� ; (25)

and with the help of the relations

S21(p
0) = �ex0

S12(p
0) ;

���
12 (k) = e�x
���

21 (k) ; (26)

Eq. (19) is immediately veri�ed at the one-loop level. We have introduced

the variables x0 = �p0 � u� � and x
 = �k � u = x0 � x.

Turning now the attention to �11, we have

�i�11(p) = (�ie)2
Z

d4k

(2�)4
i�

��
11 (k)
�iS11(p

0)
� : (27)

It is convenient to separate the background dependent part �
(T )
11 from the

standard vacuum contribution

�
(0)
11 (p) = ie2

Z
d4k

(2�)4
(�S��
�/p0
�)

(p02 + i�)(k2 + i�)
: (28)

The dispersive and absorptive parts of �
(T )
11 are given by

Re�
(T )
11 = e2

Z
d4k

(2�)3
�(k2)�B(k)

(�S��
�/p0
�)
p02

� e2
Z

d4p0

(2�)3
�(p02)�F (p

0)
(�S��
�/p0
�)

k2
; (29)

Im�
(T )
11 =

e2

4�2

Z
d4k�(k2)�(p02)(�S��
�/p0
�)�

[�B(k)�F (p
0)� 1

2
�B(k) +

1

2
�F (p

0)] ; (30)

where

�B(k) = nB(x
)�(k � u) + nB(�x
)�(�k � u) ;
�F (p

0) = nF (x
0)�(p0 � u) + nF (�x0)�(�p0 � u) ; (31)
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with nF given by Eq. (21) and nB(x
) = (ex
 � 1)�1.

For Im�
(0)
11 , the Cutkosky rules yield

Im�
(0)
11 =

�e2
8�2

Z
d4k�(k2)�(p02)(�S��
�/p0
�)�

[�(p0 � u)�(�k � u) + �(�p0 � u)�(k � u)] ; (32)

and using the identity

2�B(k)�F (p
0)� �B(k) + �F (p

0) = �(k � u)�(�p0 � u) + �(�k � u)�(p0 � u)
+(ex
 � ex

0

)nF (x
0)nB(x
)�(k � u)�(p0 � u); (33)

it follows that, in the combination Im�
(0)
11 + Im�

(T )
11 , the vacuum term is

cancelled by an identical contribution coming from the temperature depen-

dent part. The remaining terms can be rewritten by means of the rela-

tion ex
nB(x
)nF (x
0) = nF (x)[nF (x

0) + nB(x
)], and comparing them with

Eq. (24) it is seen that

Im�11(p) =
i

2
(1� ex)�12(p) ; (34)

in agreement with Eq. (20).

Introducing �11 r � Re�11, from (29) it follows that

Im�
(T )
11r("+ i�; ~P ) =

�e2
8�2

Z
d3k

2!k

d3p0

2E0
(�S��
�/p0
�)�h

�(4)(p + k � p0)(n
 + ne) + �(4)(p � k � p0)(n
 � ne)

+�(4)(p � k + p0)(n
 + ne) + �(4)(p + k + p0)(n
 � ne)
i
:

(35)

In a similar fashion, from Eq. (28)

Im�
(0)
11r("+ i�; ~P ) =

�e2
8�2

Z
d3k

2!k

d3p0

2E0
(�S��
�/p0
�)�

[�(4)(p � k � p0) + �(4)(p + k + p0)] : (36)

Adding both expressions and comparing with Eq. (24), we arrive at

Im�11r("+ i�; ~P ) =
�12(p)

2inF (x)
: (37)
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This last result explicitly shows that the physical self-energy determined

by Eq. (20) satis�es the Landau condition given in Eq. (18). The same

conclusion remains valid in a covariant gauge, with �S�� replaced by �C��.

Finally, we repeat the above analysis for the approach of LR. Our strategy

is to decompose the electron self-energy into two pieces,

�
(mix)

ab = �ab + �0
ab ; (38)

with �ab being the quantity we have calculated previously and �0
ab represent-

ing an additional contribution that arises from the term (S�� � C��)�
(0)

ab in

the photon propagator. In this way, the 12 element of the self-energy in the

mixed gauge is expressed as in Eq. (38), with �12 given by Eq. (24) and

�0
12(p) =

�ie2
4�2

Z
d3k

2!k

d3p0

2E0
(S�� �C��)
�/p

0
� �h
�(4)(p + k � p0)ne + �(4)(p+ k + p0)(1� ne)

i
: (39)

By the same procedure,

�0
21(p) =

�ie2
4�2

Z
d3k

2!k

d3p0

2E0
(S�� � C��)
�/p

0
� �h
��(4)(p � k � p0)(1� ne)� �(4)(p� k + p0)ne

i
: (40)

For the absorptive part of �0
11, the vacuum and the temperature de-

pendent contributions can be read from Eqs. (30) and (32) respectively, by

replacing �S�� by (S�� � C��) and putting �B(k) = 0. Adding the corre-

sponding results yields

Im�0
11 =

�e2
8�2

Z
d3k

2!k

d3p0

2E0
(S�� � C��)
�/p

0
� �h
�(4)(p � k � p0)(1 � ne)� �(4)(p+ k � p0)ne

� �(4)(p + k + p0)(1 � ne) + �(4)(p� k + p0)ne
i
: (41)

Following similar steps for the real part of �0
11 we obtain

Im�0
11 r("+ i�; ~P ) =

�e2
8�2

Z
d3k

2!k

d3p0

2E0
(S�� � C��)
�/p

0
� �h
�(4)(p � k � p0)(1� ne) + �(4)(p + k � p0)ne

+ �(4)(p+ k + p0)(1 � ne) + �(4)(p� k + p0)ne
i
: (42)
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From the previous expressions for �0
ab, it is easy to verify that the �

(mix)

ab

satisfy Eq. (15), and that �
(mix)

eff determined from Eq. (14) or (16), satis�es

the Landau condition Eq. (18). In addition, by comparing the formulas in

Eqs. (39) and (40) we see that there is no simple relation between �0
12 and �

0
21,

and consequently �
(mix)
21 (p) 6= �ex�(mix)

12 (p) , which explicitly con�rms that

Eq. (19) is not applicable in the mixed gauge. In fact, if �i were calculated by

using the usual expressions in terms of �11 or �12 given in (20), which in the

present case do not yield equivalent results, then the resulting formulas would

not verify the Landau condition. As already explained in the paragraph above

Eq. (19), this is due to the fact that the sum used to de�ne the statistical

averages is not carried over a complete set of states of the system.
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