169 research outputs found

    Gravitational waves in an anomaly-induced inflation

    Full text link
    The behaviour of gravitational waves in the anomaly-induced inflationary phase is studied. The metric perturbations exhibit a stable behaviour, with a very moderate growth in the amplitude of the waves. The spectral indice is computed, revealing an almost flat spectrum.Comment: 4 pages. Talk presented at IRGA 2003 (Renormalization Group and Anomalies in Gravitation and Cosmology, Ouro Preto, Brazil, 16-23 March, 2003

    Ruling out the Modified Chaplygin Gas Cosmologies

    Get PDF
    The Modified Chaplygin Gas (MCG) model belongs to the class of a unified models of dark energy (DE) and dark matter (DM). It is characterized by an equation of state (EoS) pc=BρA/ραp_c = B\rho - A/\rho^{\alpha}, where the case B=0B=0 corresponds to the Generalized Chaplygin Gas (GCG) model. Using a perturbative analysis and power spectrum observational data we show that the MCG model is not a sucessful candidate for the cosmic medium unless B=0B=0. In this case, it reduces to the usual GCG model.Comment: Latex file, 7 pages, 6 figures in eps forma

    Observational constraints on Rastall's cosmology

    Full text link
    Rastall's theory is a modification of General Relativity, based on the non-conservation of the stress-energy tensor. The latter is encoded in a parameter γ\gamma such that γ=1\gamma = 1 restores the usual νTμν=0\nabla_\nu T^{\mu\nu} = 0 law. We test Rastall's theory in cosmology, on a flat Robertson-Walker metric, investigating a two-fluid model and using the type Ia supernovae Constitution dataset. One of the fluids is pressureless and obeys the usual conservation law, whereas the other is described by an equation of state px=wxρxp_x = w_x\rho_x, with wxw_x constant. The Bayesian analysis of the Constitution set does not strictly constrain the parameter γ\gamma and prefers values of wxw_x close to -1. We then address the evolution of small perturbations and show that they are dramatically unstable if wx1w_x \neq -1 and γ1\gamma \neq 1, i.e. General Relativity is the favored configuration. The only alternative is wx=1w_x = -1, for which the dynamics becomes independent from γ\gamma.Comment: Latex file, 14 pages, 6 figures in eps format. Substantial modifications performed, main conclusions change

    Thermodynamics of Chaplygin gas

    Full text link
    We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).Comment: 5 pages, 4 figures, version "Accepted for publication in Astrophysics & Space Science

    Power spectrum in the Chaplygin gas model: tachyonic, fluid and scalar field representations

    Full text link
    The Chaplygin gas model, characterized by an equation of state of the type p=Aρp = - \frac{A}{\rho} emerges naturally from the Nambu-Goto action of string theory. This fluid representation can be recast under the form of a tachyonic field given by a Born-Infeld type Lagrangian. At the same time, the Chaplygin gas equation of state can be obtained from a self-interacting scalar field. We show that, from the point of view of the supernova type Ia data, the three representations (fluid, tachyonic, scalar field) lead to the same results. However, concerning the matter power spectra, while the fluid and tachyonic descriptions lead to exactly the same results, the self-interacting scalar field representation implies different statistical estimations for the parameters. In particular, the estimation for the dark matter density parameter in the fluid representation favors a universe dominated almost completely by dark matter, while in the self-interacting scalar field representation the prediction is very closed to that obtained in the Λ\LambdaCDM model.Comment: Latex file, 10 pages, 18 figures in EPS forma

    Newtonian Approach to the Matter Power Spectrum of the Generalized Chaplygin Gas

    Full text link
    We model the cosmic medium as the mixture of a generalized Chaplygin gas and a pressureless matter component. Within a neo-Newtonian approach we compute the matter power spectrum. The 2dFGRS data are used to discriminate between unified models of the dark sector and different models, for which there is separate dark matter, in addition to that accounted for by the generalized Chaplygin gas. Leaving the corresponding density parameters free, we find that the unified models are strongly disfavored. On the other hand, using unified model priors, the observational data are also well described, in particular for small and large values of the generalized Chaplygin gas parameter α\alpha.Comment: Latex file, 5 pages, 11 figures in eps format. For the proceedings of the conference Dark Energy and Dark Matter, 7-11 july 2008, Lyon, Franc

    Density perturbations in an Universe dominated by the Chaplygin gas

    Get PDF
    We study the fate of density perturbations in an Universe dominate by the Chaplygin gas, which exhibit negative pressure. We show that it is possible to obtain the value for the density contrast observed in large scale structure of the Universe by fixing a free parameter in the equation of state of this gas. The negative character of pressure must be significant only very recently.Comment: Latex file, 5 page

    Note on the Evolution of the Gravitational Potential in Rastall Scalar Field Theories

    Full text link
    We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the newtonian gauge, is possible only for γ=1\gamma = 1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows also to consider the case γ1\gamma \neq 1.Comment: 16 pages, 3 figures, Sections 2 and 5 enlarged, accepted for publication in Physics Letters

    Density Perturbations in the Brans-Dicke Theory

    Get PDF
    We analyse the fate of density perturbation in the Brans-Dicke Theory, giving a general classification of the solutions of the perturbed equations when the scale factor of the background evolves as a power law. We study with details the cases of vacuum, inflation, radiation and incoherent matter. We find, for the a negative Brans-Dicke parameter, a significant amplification of perturbations.Comment: 26 pages, latex fil

    Contraints on unified models for dark matter and dark energy using H(z)

    Get PDF
    The differential age data of astrophysical objects that have evolved passivelly during the history of the universe (e.g. red galaxies) allows to test theoretical cosmological models through the predicted Hubble function expressed in terms of the redshift zz, H(z)H(z). We use the observational data for H(z)H(z) to test unified scenarios for dark matter and dark energy. Specifically, we focus our analysis on the Generalized Chaplygin Gas (GCG) and the viscous fluid (VF) models. For the GCG model, it is shown that the unified scenario for dark energy and dark matter requires some priors. For the VF model we obtain estimations for the free parameters that may be compared with further analysis mainly at perturbative level.Comment: Latex file, 10 pages, 19 figures in eps format. Accepted for publication in European Journal of Physics
    corecore