The Chaplygin gas model, characterized by an equation of state of the type p=−ρA emerges naturally from the Nambu-Goto action of string
theory. This fluid representation can be recast under the form of a tachyonic
field given by a Born-Infeld type Lagrangian. At the same time, the Chaplygin
gas equation of state can be obtained from a self-interacting scalar field. We
show that, from the point of view of the supernova type Ia data, the three
representations (fluid, tachyonic, scalar field) lead to the same results.
However, concerning the matter power spectra, while the fluid and tachyonic
descriptions lead to exactly the same results, the self-interacting scalar
field representation implies different statistical estimations for the
parameters. In particular, the estimation for the dark matter density parameter
in the fluid representation favors a universe dominated almost completely by
dark matter, while in the self-interacting scalar field representation the
prediction is very closed to that obtained in the ΛCDM model.Comment: Latex file, 10 pages, 18 figures in EPS forma