592 research outputs found

    Multiplicative renormalizability of gluon and ghost propagators in QCD

    Get PDF
    We reformulate the coupled set of continuum equations for the renormalized gluon and ghost propagators in QCD, such that the multiplicative renormalizability of the solutions is manifest, independently of the specific form of full vertices and renormalization constants. In the Landau gauge, the equations are free of renormalization constants, and the renormalization point dependence enters only through the renormalized coupling and the renormalized propagator functions. The structure of the equations enables us to devise novel truncations with solutions that are multiplicatively renormalizable and agree with the leading order perturbative results. We show that, for infrared power law behaved propagators, the leading infrared behavior of the gluon equation is not solely determined by the ghost loop, as concluded in previous studies, but that the gluon loop, the three-gluon loop, the four-gluon loop, and even massless quarks also contribute to the infrared analysis. In our new Landau gauge truncation, the combination of gluon and ghost loop contributions seems to reject infrared power law solutions, but massless quark loops illustrate how additional contributions to the gluon vacuum polarization could reinstate these solutions. Moreover, a schematic study of the three-gluon and four-gluon loops shows that they too need to be considered in more detail before a definite conclusion about the existence of infrared power behaved gluon and ghost propagators can be reached.Comment: 13 pages, 1 figure, submitted to Phys. Rev.

    Landau-Khalatnikov-Fradkin Transformations and the Fermion Propagator in Quantum Electrodynamics

    Get PDF
    We study the gauge covariance of the massive fermion propagator in three as well as four dimensional Quantum Electrodynamics (QED). Starting from its value at the lowest order in perturbation theory, we evaluate a non-perturbative expression for it by means of its Landau-Khalatnikov-Fradkin (LKF) transformation. We compare the perturbative expansion of our findings with the known one loop results and observe perfect agreement upto a gauge parameter independent term, a difference permitted by the structure of the LKF transformations.Comment: 9 pages, no figures, uses revte

    Gauge Dependence of Mass and Condensate in Chirally Asymmetric Phase of Quenched QED3

    Get PDF
    We study three dimensional quenched Quantum Electrodynamics in the bare vertex approximation. We investigate the gauge dependence of the dynamically generated Euclidean mass of the fermion and the chiral condensate for a wide range of values of the covariant gauge parameter ξ\xi. We find that (i) away from ξ=0\xi=0, gauge dependence of the said quantities is considerably reduced without resorting to sophisticated vertex {\em ansatze}, (ii) wavefunction renormalization plays an important role in restoring gauge invariance and (iii) the Ward-Green-Takahashi identity seems to increase the gauge dependence when used in conjunction with some simplifying assumptions. In the Landau gauge, we also verify that our results are in agreement with those based upon dimensional regularization scheme within the numerical accuracy available.Comment: 14 pages, 11 figures, uses revte

    Coupled virus - bacteria interactions and ecosystem function in an engineered microbial system

    Get PDF
    Viruses are thought to control bacterial abundance, affect community composition and influence ecosystem function in natural environments. Yet their dynamics have seldom been studied in engineered systems, or indeed in any system, for long periods of time. We measured virus abundance in a full-scale activated sludge plant every week for two years. Total bacteria and ammonia oxidising bacteria (AOB) abundances, bacterial community profiles, and a suite of environmental and operational parameters were also monitored. Mixed liquor virus abundance fluctuated over an order of magnitude (3.18 × 108 – 3.41 × 109 virus’s mL-1) and that variation was statistically significantly associated with total bacterial and AOB abundance, community composition, and effluent concentrations of COD and NH4+- N and thus system function. This suggests viruses play a far more important role in the dynamics of activated sludge systems than previously realised and could be one of the key factors controlling bacterial abundance, community structure and functional stability and may cause reactors to fail. These finding are based on statistical associations, not mechanistic models. Nevertheless, viral associations with abiotic factors, such as pH, make physical sense giving credence to these findings and highlighting the role that physical factors play in virus ecology. Further work is needed to identify and quantify specific bacteriophage and their hosts to enable us to develop mechanistic models of the ecology of viruses in wastewater treatment systems. However, since we have shown that viruses can be related to effluent quality and virus quantification is simple and cheap, practitioners would probably benefit from quantifying viruses now

    Theoretical prediction of CNT-CF/PP composite tensile properties using various numerical modeling methods

    Get PDF
    Development of effective models to predict tensile properties of ‘carbon nanotube coated carbon fibre reinforced polypropylene (CNT-CF/PP)’ composites is briefly discussed. The composite taken as the reference is based on the highest growth mechanism of CNTs over carbon fibres. Halpin-Tsai and Combined Voigt-Reuss model has been implemented. Young's modulus for CNT-CF/PP composites has been found 4.5368 GPa and the tensile strength has been estimated 45.367 MPa considering the optimum operating condition of chemical vapor deposition (CVD) technique. Stiffness of the composite is represented through the stress-strain plots; stiffness is proportional to the steepness of the slope. There are slight deviations of results that have been found theoretically over the experimental issues

    Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory

    Full text link
    The Slavnov-Taylor identities of Coulomb gauge Yang-Mills theory are derived from the (standard, second order) functional formalism. It is shown how these identities form closed sets from which one can in principle fully determine the Green's functions involving the temporal component of the gauge field without approximation, given appropriate input.Comment: 20 pages, no figure

    Non-perturbative Propagators, Running Coupling and Dynamical Quark Mass of Landau gauge QCD

    Get PDF
    The coupled system of renormalized Dyson-Schwinger equations for the quark, gluon and ghost propagators of Landau gauge QCD is solved within truncation schemes. These employ bare as well as non-perturbative ansaetze for the vertices such that the running coupling as well as the quark mass function are independent of the renormalization point. The one-loop anomalous dimensions of all propagators are reproduced. Dynamical chiral symmetry breaking is found, the dynamically generated quark mass agrees well with phenomenological values and corresponding results from lattice calculations. The effects of unquenching the system are small. In particular the infrared behavior of the ghost and gluon dressing functions found in previous studies is almost unchanged as long as the number of light flavors is smaller than four.Comment: 34 pages, 10 figures, version to be published by Phys. Rev.

    B(E1) Strengths from Coulomb Excitation of 11Be

    Get PDF
    The BB(E1;1/2+1/21/2^+\to1/2^-) strength for 11^{11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for 11^{11}Be+208^{208}Pb at 38.6 MeV/nucleon is reported. The BB(E1) strength of 0.105(12) e2^2fm2^2 derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, i n contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e2^2fm2^2. This value is in good agreement with the value deduced independently from the lifetime of the 1/21/2^- state in 11^{11}Be, and has a comparable p recision.Comment: 5 pages, 2 figures, accepted for publication in Phys. Lett.

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    Helium Clustering in Neutron-Rich Be Isotopes

    Get PDF
    Measurements of the helium-cluster breakup and neutron removal cross sections for neutron-rich Be isotopes A=10-12,14 are presented. These have been studied in the 30 to 42 MeV/u energy range where reaction measurements are proposed to be sensitive to the cluster content of the ground-state wave-function. These measurements provide a comprehensive survey of the decay processes of the Be isotopes by which the valence neutrons are removed revealing the underlying alpha-alpha core-cluster structure. The measurements indicate that clustering in the Be isotopes remains important up to the drip-line nucleus 14^Be and that the dominant helium-cluster structure in the neutron-rich Be isotopes corresponds to alpha-Xn-alpha.Comment: 5 pages, 2 tables and 3 figure
    corecore