1,707 research outputs found

    A conformal scalar dyon black hole solution

    Get PDF
    An exact solution of Einstein - Maxwell - conformal scalar field equations is given, which is a black hole solution and has three parameters: scalar charge, electric charge, and magnetic charge. Switching off the magnetic charge parameter yields the solution given by Bekenstein. In addition the energy of the conformal scalar dyon black hole is obtained.Comment: 7 pages, Late

    Interference of the T cell and antigen-presenting cell costimulatory pathway using CTLA4-Ig (abatacept) prevents Staphylococcal enterotoxin B pathology

    Get PDF
    Abstract Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds the receptors in the APC/T cell synapse and causes increased proliferation of T cells and a cytokine storm syndrome in vivo. Exposure to the toxin can be lethal and cause significant pathology in humans. The lack of effective therapies for SEB exposure remains an area of concern, particularly in scenarios of acute mass casualties. We hypothesized that blockade of the T cell costimulatory signal by the CTLA4-Ig synthetic protein (abatacept) could prevent SEB-dependent pathology. In this article, we demonstrate mice treated with a single dose of abatacept 8 h post SEB exposure had reduced pathology compared with control SEB-exposed mice. SEB-exposed mice showed significant reductions in body weight between days 4 and 9, whereas mice exposed to SEB and also treated with abatacept showed no weight loss for the duration of the study, suggesting therapeutic mitigation of SEB-induced morbidity. Histopathology and magnetic resonance imaging demonstrated that SEB mediated lung damage and edema, which were absent after treatment with abatacept. Analysis of plasma and lung tissues from SEB-exposed mice treated with abatacept demonstrated significantly lower levels of IL-6 and IFN-γ (p &amp;lt; 0.0001), which is likely to have resulted in less pathology. In addition, exposure of human and mouse PBMCs to SEB in vitro showed a significant reduction in levels of IL-2 (p &amp;lt; 0.0001) after treatment with abatacept, indicating that T cell proliferation is the main target for intervention. Our findings demonstrate that abatacept is a robust and potentially credible drug to prevent toxic effects from SEB exposure.</jats:p

    Compactability and mechanical properties of cold recycled mixes prepared with different nominal maximum sizes of RAP

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract:] The use of cold recycled asphalt mixtures (CRM) has been soaring during recent years. Reclaimed Asphalt Pavement (RAP) is the main component of CRM, and despite the numerous studies on CRM, the impact of different RAP types has not been deeply studied. This study compares the volumetric and several mechanical properties of CRM prepared with RAP from two different sources and with various nominal maximum sizes (NMS). The mix design was fixed, and specimens were prepared using gyratory and impact compactors. Densities were measured before and after accelerated curing. Stiffness of CRM was investigated with Indirect Tensile Stiffness Modulus, tension–compression, and dynamic tests. Additionally, the cracking behavior was evaluated with Indirect Tensile Strength and Semi-Circular Bending tests. The particle size distribution was a key factor in the compactability of the CRMs studied. Together with temperature, the most influential factor on the studied mechanical properties was the air void content, while the differences in NMS showed no clear trends.Ministerio de Ciencia e Innovación; BIA2016-80317-RMinisterio de Ciencia e Innovación; BES-2017-07963

    Seasonal and diurnal variations in AMPERE observations of the Birkeland currents compared to modeled results

    No full text
    We reduce measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to give the total Birkeland (field-aligned) current flowing in both hemispheres in monthly and hourly bins. We analyze these totals using 6 years of data (2010–2015) to examine solar zenith angle-driven variations in the total Birkeland current flowing in both hemispheres, simultaneously, for the first time. A diurnal variation is identified in the total Birkeland current flowing, consistent with variations in the solar zenith angle. A seasonal variation is also identified, with more current flowing in the Northern (Southern) Hemisphere during Bartels rotations in northern (southern) summer. For months close to equinox, more current is found to flow in the Northern Hemisphere, contrary to our expectations. We also conduct the first test of the Milan (2013) model for estimating Birkeland current magnitudes, with modifications made to account for solar contributions to ionospheric conductance based on the observed variation of the Birkeland currents with season and time of day. The modified model, using the value of ?D averaged by Bartels rotation (scaled by 1.7), is found to agree with the observed AMPERE currents, with a correlation of 0.87 in the Northern Hemisphere and 0.86 in the Southern Hemisphere. The improvement over the correlation with dayside reconnection rate is demonstrated to be a significant improvement to the model. The correlation of the residuals is found to be consistent with more current flowing in the Northern Hemisphere. This new observation of systematically larger current flowing in the Northern Hemisphere is discussed in the context of previous results which suggest that the Northern Hemisphere may react more strongly to dayside reconnection than the Southern Hemisphere

    Potential Alcohol Production from Beta Vulgaris Genotypes as Affected by Nitrogen Level and Water Stress

    Get PDF
    Present and future world shortages and increasing petroleum costs have stimulated the search for alternate renewable and nonrenewable energy sources. Sugarbeets (Beta vulgaris L.) and sugarcane (Saccharum app.) have high potential as a feedstock for conversion to alcohol as a practical renewable energy source. Sugarbeets have many desirable characteristics such as: storage of 40 to 50% of their dry matter as fermentable sugars (6, 7, 15); a small nitrogen (N) requirement per unit of sugar produced (2, 5, 7); a range of related Beta vulgaris genotypes which may be used to increase yield potential (7, 8); use of by-products as a cattle feed or conversion to methane (6, 7); and wide adaptation within the U.S. (19). They can also be stored up to 6 months in cool areas, all of which make them a primary feedstock source for alcohol production

    Vegetative fragment production as a means of propagule dispersal for tropical seagrass meadows

    Get PDF
    Background and aims: Long distance dispersal (LDD) contributes to the replenishment and recovery of tropical seagrass habitats exposed to disturbance, such as cyclones and infrastructure development. However, our current knowledge regarding the physical attributes of seagrass fragments that influence LDD predominantly stems from temperate species and regions. The goal of this paper is to measure seagrass fragment density and viability in two tropical species, assessing various factors influencing their distribution. Methods: We measured the density and viability of floating seagrass fragments for two tropical seagrass species (Zostera muelleri and Halodule uninervis) in two coastal seagrass meadows in the central Great Barrier Reef World Heritage Area, Australia. We assessed the effect of wind speed, wind direction, seagrass growing/senescent season, seagrass meadow density, meadow location and dugong foraging intensity on fragment density. We also measured seagrass fragment structure and fragment viability; i.e., potential to establish into a new plant. Key results: We found that seagrass meadow density, season, wind direction and wind speed influenced total fragment density, while season and wind speed influenced the density of viable fragments. Dugong foraging intensity did not influence fragment density. Our results indicate that wave action from winds combined with high seagrass meadow density increases seagrass fragment creation, and that more fragments are produced during the growing than the senescent season. Seagrass fragments classified as viable for Z. muelleri and H. uninervis had significantly more shoots and leaves than non-viable fragments. We collected 0.63 (±0.08 SE) floating viable fragments 100 m−2 in the growing season, and 0.13 (±0.03 SE) viable fragments 100 m−2 in the senescent season. Over a third (38%) of all fragments collected were viable. Conclusion: There is likely to be a large number of viable seagrass fragments available for long distance dispersal. This study's outputs can inform dispersal and connectivity models that are used to direct seagrass ecosystem management and conservation strategies

    Dilatonic current-carrying cosmic strings

    Full text link
    We investigate the nature of ordinary cosmic vortices in some scalar-tensor extensions of gravity. We find solutions for which the dilaton field condenses inside the vortex core. These solutions can be interpreted as raising the degeneracy between the eigenvalues of the effective stress-energy tensor, namely the energy per unit length U and the tension T, by picking a privileged spacelike or timelike coordinate direction; in the latter case, a phase frequency threshold occurs that is similar to what is found in ordinary neutral current-carrying cosmic strings. We find that the dilaton contribution for the equation of state, once averaged along the string worldsheet, vanishes, leading to an effective Nambu-Goto behavior of such a string network in cosmology, i.e. on very large scales. It is found also that on small scales, the energy per unit length and tension depend on the string internal coordinates in such a way as to permit the existence of centrifugally supported equilibrium configuration, also known as vortons, whose stability, depending on the very short distance (unknown) physics, can lead to catastrophic consequences on the evolution of the Universe.Comment: 10 pages, ReVTeX, 2 figures, minor typos corrected. This version to appear in Phys. Rev.

    The climate change risk management matrix for the grazing industry of northern Australia

    Get PDF
    The complexity, variability and vastness of the northern Australian rangelands make it difficult to assess the risks associated with climate change. In this paper we present a methodology to help industry and primary producers assess risks associated with climate change and to assess the effectiveness of adaptation options in managing those risks. Our assessment involved three steps. Initially, the impacts and adaptation responses were documented in matrices by ‘experts’ (rangeland and climate scientists). Then, a modified risk management framework was used to develop risk management matrices that identified important impacts, areas of greatest vulnerability (combination of potential impact and adaptive capacity) and priority areas for action at the industry level. The process was easy to implement and useful for arranging and analysing large amounts of information (both complex and interacting). Lastly, regional extension officers (after minimal ‘climate literacy’ training) could build on existing knowledge provided here and implement the risk management process in workshops with rangeland land managers. Their participation is likely to identify relevant and robust adaptive responses that are most likely to be included in regional and property management decisions. The process developed here for the grazing industry could be modified and used in other industries and sectors. By 2030, some areas of northern Australia will experience more droughts and lower summer rainfall. This poses a serious threat to the rangelands. Although the impacts and adaptive responses will vary between ecological and geographic systems, climate change is expected to have noticeable detrimental effects: reduced pasture growth and surface water availability; increased competition from woody vegetation; decreased production per head (beef and wool) and gross margin; and adverse impacts on biodiversity. Further research and development is needed to identify the most vulnerable regions, and to inform policy in time to facilitate transitional change and enable land managers to implement those changes

    Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics

    Get PDF
    Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts
    corecore