4 research outputs found

    Short-term response of Soil Physical properties of an Ultisol, and Nutrient composition of Fluted Pumpkin to Organic and Inorganic Fertilizer mixtures.

    Get PDF
    A field experiment was conducted at the Research Farm of Federal College of Agriculture, Ishiagu, Ebonyi State  to evaluate the influence of sole organo-minerals and inorganic fertilizer and mixed forms on some selected soil physical properties and leaf nutrient composition of fluted pumpkin (Telfairia Occidentalis Hook F). The treatments (T1 = Control; T2 = 10 t/ha of rice-husk dust; T3 = 10 t/ha rice husk ash; T4 = 10 t/ha poultry droppings; T5 = 0.375 t/ha of NPK fertilizer 15:15:15; T6 = 5 t/ha of rice husk dust + 5 t/ha of poultry dropping; T7 = 5 t/ha of rice husk dust + 0.188 t/ha NPK 15: 15: 15; T8 = 5 t/ha poultry dropping + 5 t/ha of rice husk ash; T9 = 5 t/ha rice husk ash + 0.38 t/ha of NPK 15:15:15) were built into a randomized complete block design (RCBD) with three replications. Data on soil physical properties and leaf nutrient composition of fluted pumpkin`     were collected and subjected to statistical analysis using Genstat 3 7.2 Edition. The results obtained showed that soil bulk density was significantly reduced on soils treated with different amendment combinations of organo-minerals and inorganic fertilizer compared to the control which received no application of amendment. The soils total porosity, saturated hydraulic conductivity and moisture content were improved when treated the soil with different amendment combinations compared to the control .More so, the results equally revealed that treatments application did statistically improve the leaf nutrient compositions. Key words: Amendments, Soil physical properties, organo-minerals, nutrient composition, fluted pumpkin

    Manurial amendments and source of water for supplemental irrigation of sawah-rice system influenced soil quality and rice yield

    Get PDF
    Soil and water management research on adapting the promising sawah ecotechnology for lowland rice farming in West Africa has largely focused on the abundant inland valleys; floodplains which too represent a huge agricultural resource in the region have not been so involved. Sawah refers to a bunded, puddled and leveled basin for rice, with water inlets and outlets for irrigation and drainage, respectively. In conventional sawah, soil fertility is augmented using mineral fertilizers, with an option to harness lowland water resources for use in small-scale irrigation to create the so-called sawah typologies. In this study, we evaluated the effects of three manurial amendments (rice husk, rice-husk ash and poultry droppings, each at 10 t ha–1) and NPK 20:10:10 at 400 kg ha–1 interacting with source of water (spring or pond) used for supplemental irrigation of three sawah typologies in a floodplain in southeastern Nigeria. Plots amended with poultry droppings and supplemented with spring water recorded the overall best performance of the sawah-rice system; the control being the unamended non-supplemented (solely rainfed) plots recorded the worst. Rice-husk ash and rice husk enhanced soil pH and soil organic carbon, respectively. The three sawah typologies showed a consistent trend thus spring-supplemented ≥ pond-supplemented ≥ non-supplemented sawah. Rice grain yield was influenced by soil total nitrogen and the sum of the three plant-nutrient basic cations (K+ , Ca2+ and Mg2+), with the influence of K+ alone being the greatest. To enhance rice performance including grain yields in floodplain sawah, farmers should utilise poultry droppings as soil manure and spring water for supplemental irrigation

    Long-term effects of lowland sawah system on soil physicochemical properties and rice yield in Ashanti Region of Ghana

    No full text
    corecore