5 research outputs found

    View Invariant Gait Recognition

    No full text
    Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated towards viewinvariant gait recognition

    A sensitive method for the determination of gold and palladium based on dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometric determination using N-(6-morpholin-4-ylpyridin-3-yl)-N '-phenylthiourea

    No full text
    Soylak, Mustafa/0000-0002-1017-0244WOS: 000369515500005A new method for the determination of gold and palladium was developed by dispersive liquid-liquid microextraction separation-preconcentration and flame atomic absorption spectrometry detection. In the proposed approach, N-(6-morpholin-4-ylpyridin-3-yl)-N'-phenylthiourea (MPPT) was synthesized as a complexing agent. The complexation ability of the MPPT was explored by examining the effect of a series of heavy metal ions, including Mn2+, Pd2+, Ni2+, Cd2+, Co2+, Cu2+, Au3+, Pb2+, Zn2+ and Fe3+, using the DLLME procedure. The MPPT exhibited pronounced selectivity toward Pd2+ and Au3+ ions at different pH levels. Factors influencing the extraction efficiency and complex formation were examined, i.e. the pH of the sample solution, the concentration of the chelating agent, the extraction and dispersive solvent type and volume, the sample volume, and foreign ions, etc. Optimal conditions for quantitative recoveries were pH 5.5 for gold and pH 1.5 for palladium, 125 mu L of % 0.4 MPPT, 1200 mu L of methanol and 125 mu L of carbon tetrachloride. The presented method showed a good linearity within a range of 30-230 and 25-200 mu g L-1 with the detection limits of 1.75 and 1.65 mu g L-1 for Au and Pd, respectively. The relative standard deviation (RSD) was below 2.8% at 50 mu g L-1 for both ions (n = 10). The developed method was simple, fast, cost efficient, and sensitive for the extraction and preconcentration of gold and palladium in samples of liquids (sea, stream water) and solids (stream sediment, ores, and electronic waste).Unit of the Scientific Research Projects of Karadeniz Technical University [1223]Financial support of the Unit of the Scientific Research Projects of Karadeniz Technical University (Project no: 1223) is gratefully acknowledged
    corecore