749 research outputs found

    Nonexpanding impulsive gravitational waves with an arbitrary cosmological constant

    Get PDF
    Exact solutions for nonexpanding impulsive waves in a background with nonzero cosmological constant are constructed using a `cut and paste' method. These solutions are presented using a unified approach which covers the cases of de Sitter, anti-de Sitter and Minkowski backgrounds. The metrics are presented in continuous and distributional forms, both of which are conformal to the corresponding metrics for impulsive pp-waves, and for which the limit as Λ0\Lambda\to 0 can be made explicitly.Comment: 5 pages, LaTeX. To appear in Phys. Lett.

    The Quantum Mechanical Arrows of Time

    Full text link
    The familiar textbook quantum mechanics of laboratory measurements incorporates a quantum mechanical arrow of time --- the direction in time in which state vector reduction operates. This arrow is usually assumed to coincide with the direction of the thermodynamic arrow of the quasiclassical realm of everyday experience. But in the more general context of cosmology we seek an explanation of all observed arrows, and the relations between them, in terms of the conditions that specify our particular universe. This paper investigates quantum mechanical and thermodynamic arrows in a time-neutral formulation of quantum mechanics for a number of model cosmologies in fixed background spacetimes. We find that a general universe may not have well defined arrows of either kind. When arrows are emergent they need not point in the same direction over the whole of spacetime. Rather they may be local, pointing in different directions in different spacetime regions. Local arrows can therefore be consistent with global time symmetry.Comment: 9 pages, 4 figures, revtex4, typos correcte

    The stability of Killing-Cauchy horizons in colliding plane wave space-times

    Get PDF
    It is confirmed rigorously that the Killing-Cauchy horizons, which sometimes occur in space-times representing the collision and subsequent interaction of plane gravitational waves in a Minkowski background, are unstable with respect to bounded perturbations of the initial waves, at least for the case in which the initial waves have constant aligned polarizations.Comment: 8 pages. To appear in Gen. Rel. Gra

    On localization in holomorphic equivariant cohomology

    Get PDF
    We prove a localization formula for a "holomorphic equivariant cohomology" attached to the Atiyah algebroid of an equivariant holomorphic vector bundle. This generalizes Feng-Ma, Carrell-Liebermann, Baum-Bott and K. Liu's localization formulas.Comment: 16 pages. Completely rewritten, new title. v3: Minor changes in the exposition. v4: final version to appear in Centr. Eur. J. Mat

    Two-flux Colliding Plane Waves in String Theory

    Full text link
    We construct the two-flux colliding plane wave solutions in higher dimensional gravity theory with dilaton, and two complementary fluxes. Two kinds of solutions has been obtained: Bell-Szekeres(BS) type and homogeneous type. After imposing the junction condition, we find that only Bell-Szekeres type solution is physically well-defined. Furthermore, we show that the future curvature singularity is always developed for our solutions.Comment: 16 pages, Latex; typoes corrected; references added, minor modification

    Conditional probabilities in Ponzano-Regge minisuperspace

    Full text link
    We examine the Hartle-Hawking no-boundary initial state for the Ponzano-Regge formulation of gravity in three dimensions. We consider the behavior of conditional probabilities and expectation values for geometrical quantities in this initial state for a simple minisuperspace model consisting of a two-parameter set of anisotropic geometries on a 2-sphere boundary. We find dependence on the cutoff used in the construction of Ponzano-Regge amplitudes for expectation values of edge lengths. However, these expectation values are cutoff independent when computed in certain, but not all, conditional probability distributions. Conditions that yield cutoff independent expectation values are those that constrain the boundary geometry to a finite range of edge lengths. We argue that such conditions have a correspondence to fixing a range of local time, as classically associated with the area of a surface for spatially closed cosmologies. Thus these results may hint at how classical spacetime emerges from quantum amplitudes.Comment: 26 pages including 10 figures, some reorganization in the presentation of results, expanded discussion of results in the context of 2+1 gravity in the Witten variables, 3 new reference

    Thin static charged dust Majumdar-Papapetrou shells with high symmetry in D >= 4

    Full text link
    We present a systematical study of static D >= 4 space-times of high symmetry with the matter source being a thin charged dust hypersurface shell. The shell manifold is assumed to have the following structure S_(beta) X R^(D-2-beta), beta (in the interval ) is dimension of a sphere S_(beta). In case of (beta) = 0, we assume that there are two parallel hyper-plane shells instead of only one. The space-time has Majumdar-Papapetrou form and it inherits the symmetries of the shell manifold - it is invariant under both rotations of the S_(beta) and translations along R^(D-2-beta). We find a general solution to the Einstein-Maxwell equations with a given shell. Then, we examine some flat interior solutions with special attention paid to D = 4. A connection to D = 4 non-relativistic theory is pointed out. We also comment on a straightforward generalisation to the case of Kastor-Traschen space-time, i.e. adding a non-negative cosmological constant to the charged dust matter source.Comment: Accepted in Int. J. Theor. Phy

    Consistent histories of systems and measurements in spacetime

    Full text link
    Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive "no collapse" interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such a relativistic spacetime path formalism, the quantum history of the universe could be considered to be an eignestate of the measurements made within it. However, two important topics were not addressed in detail there: a model of measurement processes in the context of quantum histories in spacetime and a justification for why the probabilities for each possible cosmological eigenstate should follow Born's rule. The present paper addresses these topics by showing how Zurek's concepts of einselection and envariance can be applied in the context of relativistic spacetime and quantum histories. The result is a model of systems and subsystems within the universe and their interaction with each other and their environment.Comment: RevTeX 4; 37 pages; v2 is a revision in response to reviewer comments, connecting the discussion in the paper more closely to consistent history concepts; v3 has minor editorial corrections; accepted for publication in Foundations of Physics; v4 has a couple minor typographical correction

    Consistent Histories in Quantum Cosmology

    Get PDF
    We illustrate the crucial role played by decoherence (consistency of quantum histories) in extracting consistent quantum probabilities for alternative histories in quantum cosmology. Specifically, within a Wheeler-DeWitt quantization of a flat Friedmann-Robertson-Walker cosmological model sourced with a free massless scalar field, we calculate the probability that the univese is singular in the sense that it assumes zero volume. Classical solutions of this model are a disjoint set of expanding and contracting singular branches. A naive assessment of the behavior of quantum states which are superpositions of expanding and contracting universes may suggest that a "quantum bounce" is possible i.e. that the wave function of the universe may remain peaked on a non-singular classical solution throughout its history. However, a more careful consistent histories analysis shows that for arbitrary states in the physical Hilbert space the probability of this Wheeler-DeWitt quantum universe encountering the big bang/crunch singularity is equal to unity. A quantum Wheeler-DeWitt universe is inevitably singular, and a "quantum bounce" is thus not possible in these models.Comment: To appear in Foundations of Physics special issue on quantum foundation

    Decoherence of Histories and Hydrodynamic Equations for a Linear Oscillator Chain

    Full text link
    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse-grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally-induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities.Comment: 37 pages, RevTe
    corecore