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Abstract

It is confirmed rigorously that the Killing–Cauchy horizons, which sometimes occur in space-
times representing the collision and subsequent interaction of plane gravitational waves in
a Minkowski background, are unstable with respect to bounded perturbations of the initial
waves, at least for the case in which the initial waves have constant aligned polarizations.

1 Introduction

Many classes of explicit exact solutions are known which model the collision and subsequent
interaction between shock-fronted plane gravitational waves which propagate and collide in a
Minkowski background (for reviews see [1] or [2]). In all these solutions, some kind of singularity
always appears in the interaction region. This is generally a spacelike curvature singularity (like
the time-reverse of an initial cosmological singularity). However large classes of solutions with
an infinite number of parameters exist in which the scalar polynomial curvature singularity is
replaced by a horizon. In these cases, the space-time can be extended through the horizon, but
the extension is not unique. It has become widely believed that such Killing–Cauchy horizons
are unstable with respect to small changes in the initial data. For example, Yurtsever [3] has
shown that they are unstable with respect to the addition of some perturbative linear field which
preserves the G2 symmetry. However, this result does not answer the question of whether they
are unstable with respect to variations in the approaching purely gravitational waves when the
vacuum field equations are satisfied exactly. It is the purpose of the present paper to investigate
this question in detail.

It must first be pointed out that, in the vast amount of work that was undertaken on
this topic in the 1970s and 1980s, and in all the exact solutions that were then produced, the
approach was adopted of first solving the field equations in the interaction region. Once a family
of such solutions had been obtained, the free parameters were constrained to satisfy the junction
conditions that have to be imposed in order to extend the solution to the prior regions. Thus,
the approaching waves which physically give rise to the solutions were only determined once
the solution had been obtained. Within this context, it was argued that those solutions which
contained horizons were unstable with respect to perturbations of the initial data. However, it
was not then appreciated that the perturbations which transform a Killing–Cauchy horizon to a
scalar polynomial curvature singularity also normally introduce singularities in the initial waves
prior to their collision. The question therefore still needs to be addressed as to whether or not
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the horizons are stable with respect to regular (bounded) perturbations of physically acceptable
initial waves.

It is only very recently that techniques have been developed by which colliding plane wave
solutions can be explicitly constructed from their characteristic initial data representing the
approaching waves [4]–[8]. It is therefore only now that tools are available to reconsider this
question. In this paper, only the linear vacuum case in which two approaching gravitational
waves have constant aligned polarizations will be considered. This situation is much easier to
analyse, but it already demonstrates the essential features of the physical situation. The basic
result, not surprisingly, is that the Killing–Cauchy horizons that sometimes appear in colliding
plane wave space-times are unstable with respect to bounded perturbations of the initial waves
that generate these solutions.
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Figure 1: The structure of colliding plane wave space-times. Region I is the background Minkowski
space, regions II and III contain the approaching plane waves, and region IV represents the interaction
region following the collision. The singularity structure following the collision is known from the study
of families of exact solutions and is described in [1].

2 Initial data

Colliding plane wave space-times are naturally divided into four regions as indicated in figure 1.
It is found to be convenient to use two future-pointing null coordinates u and v throughout the
space-time. The four distinct regions can then be identified as those that are separated by two
null hypersurfaces taken as u = 0 and v = 0 which represent the wavefronts of the approaching
waves.

The background region I (u < 0, v < 0) is a flat vacuum represented by the line element

ds2 = 2 du dv − dx2 − dy2. (1)

Region II (u ≥ 0, v < 0) contains one of the approaching plane waves. If this wave has
constant (linear) polarization, it can be described by a metric in the Brinkmann form

ds2 = 2 du dr − dX2 − dY 2 + h+(u)(X2 − Y 2) du2, (2)

where h+(u) = Ψ4+(u), which is the only non-zero component of the Weyl tensor (relative to
an appropriate tetrad). This arbitrary function explicitly represents the profile of the plane
gravitational wave as a function of the retarded time u. (The subscripts + and − are used here
and below to denote functions that are defined in regions II and III respectively.)

The form of the metric (2) may be taken to include region I with h+ = 0 for u < 0. However,
to analyse the collision of plane waves, it is appropriate to initially transform the line element

2



(2) to the form
ds2 = 2 du dv − e2ψ+ dx2 − α2

+ e−2ψ+ dy2. (3)

As explained in [8], the coordinate u is an affine parameter on the null geodesics v = const.
x = const. y = const. which cross the wavefront from the background region. Also, the
function ψ+(u) must satisfy the linear scattering equation

(eψ+),uu + h+(u) eψ+ = 0. (4)

In order to join (3) smoothly with (1), it is necessary that ψ+(0) = 0 and that ψ+,u(0) must
vanish except for any non-zero component which arises from a possible impulsive component on
the wavefront. With these conditions, ψ+(u) is determined uniquely from the initial wave profile
h+(u). The function ψ+(u) can therefore be taken to represent the initial data to be prescribed
on the characteristic v = 0.

With ψ+(u) determined, the initial gravitational wave is given by the Weyl tensor component

Ψ4+(u) = −ψ+,uδ(u) −
[
ψ+,uu + (ψ+,u)2

]
Θ(u). (5)

The other metric function α+(u) in (3) is then determined for region II from the linear equation

α+,uu − 2 ψ+,u α+,u + 2(ψ+,u)2 α+ = 0, (6)

whose solution is uniquely specified by the initial data α+(0) = 1, and α+,u(0) = 0. It can be
seen that α+(u) must be a monotonically decreasing function in this region.

Region III (u < 0, v ≥ 0) contains the other plane wave which approaches from the opposite
direction. If this wave also has constant polarization which is aligned with that in region II, the
metric can simply be taken as having the same form as that in that region, but with the roles
of u and v reversed. Thus, the initial data that is specified in this region will be taken as the
function ψ−(v). The non-zero component of the Weyl tensor Ψ0−(v) representing the second
initial gravitational wave is given by an equation equivalent to (5), and the metric function
α−(v) is given by the equivalent of (6) and the corresponding initial data.

Region IV (u ≥ 0, v ≥ 0) represents the region in which the waves interact. In the vacuum
case for the collision of plane gravitational waves with constant aligned polarization, this region
can always be described by the line element

ds2 = 2 f du dv − e2ψ dx2 − α2 e−2ψ dy2, (7)

where ψ(u, v), α(u, v) and f(u, v) are now functions of both null coordinates. If characteristic
initial data is taken as described above, these functions must satisfy the initial data:

ψ(u, 0) = ψ+(u)
ψ(0, v) = ψ−(v)

α(u, 0) = α+(u)
α(0, v) = α−(v)

f(u, 0) = 1
f(0, v) = 1

(8)

with ψ(0, 0) = 0, α(0, 0) = 1 and f(0, 0) = 1. The necessary (vacuum) field equations will be
considered in the following section.

3 The field equations

One of the vacuum field equations for the metric (7) is

α,uv = 0,

whose solution, satisfying the necessary initial conditions, is given by

α(u, v) = α+(u) + α+(u) − 1. (9)
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It is convenient to introduce the functions ξ(u) and η(v) such that 2α = ξ(u) − η(v), where

ξ(u) =

{
1 in regions I and III
2α+(u) − 1 in regions II and IV

, η(v) =

{
−1 in regions I and II
1 − 2α−(v) in regions III and IV

Then, since α+(u) and α−(v) are monotonically decreasing, ξ(u) must be a monotonically de-
creasing function and η(v) monotonically increasing in the interaction region.

The other main vacuum field equation is

2 α ψ,uv + α,u ψ,v + α,v ψ,u = 0, (10)

where α is given by (9) and the initial data by (8). For any solution of (10) satisfying the
initial data, the additional metric function f can be obtained by integrating the remaining field
equations which are

f,v

f
=

α,vv

α,v
+

2 α ψ,v
2

α,v
− 2 ψ,v,

f,u

f
=

α,uu

α,u
+

2 α ψ,u
2

α,u
− 2 ψ,u. (11)

The non-zero components of the Weyl tensor in the interaction region are then

Ψ0 = −ψ,vδ(v) − ψ,vv + ψ,v
2

f
+

2 ψ,v f,v

f2

Ψ2 =
1

2αf
(2α ψ,v ψ,u − α,u ψ,v − α,v ψ,u)

Ψ4 = −ψ,uδ(u) − ψ,uu + ψ,u
2

f
+

2 ψ,u f,u

f2

(12)

It may be observed that a solution can be determined in region IV up to the spacelike hypersur-
face on which α = 1

2(ξ − η) = 0, on which some kind of singularity will occur. This is referred
to as a “focussing” singularity in figure 1. Its character will be discussed below.

In view of the properties described above, it is always possible to adopt ξ and η as coordinates
throughout the interaction region, in which ξ < 1, η > −1 and ξ − η > 0. In terms of these
coordinates, the main field equation (10) becomes

(ξ − η) ψ,ξη − 1
2 ψ,ξ + 1

2 ψ,η = 0, (13)

which is an Euler–Poisson–Darboux equation with non-integer coefficients, whose solution ψ(ξ, η)
must satisfy the initial data

ψ(ξ,−1) = ψ+(ξ), ψ(1, η) = ψ−(η), (14)

with ψ(1,−1) = 0. This is sufficient to uniquely determine the solution of the colliding plane
wave problem in the interaction region. However, as explained in [8], to satisfy the initial
data, ψ(ξ, η) must be nonanalytic on each wavefront where it behaves like

√
1 − ξ or

√
1 + η

respectively. Also, in terms of these coordinates, the non-zero Weyl tensor components are

Ψ0 = −η,v ψ,ηδ(v) −
η2

,v

f

(
ψ,ηη + 2(ξ − η)ψ,η

3 + 3ψ,η
2
)

Ψ2 = − ξ,uη,v

2f(ξ − η)

(
2(ξ − η)ψ,ξ ψ,η + ψ,ξ − ψ,η

)

Ψ4 = −ξ,u ψ,ξδ(u) −
ξ2
,u

f

(
ψ,ξξ − 2(ξ − η) ψ,ξ

3 + 3ψ,ξ
2
)

.

(15)
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4 The singularity in the interaction region

Now consider the singularity which occurs in region IV on the spacelike hypersurface on which
α = 1

2(ξ − η) = 0. It can be shown (see references in [1]) that this is generically a scalar
polynomial curvature singularity on which the invariant Ψ0Ψ4−4Ψ1Ψ3+3Ψ2

2 diverges. However,
families of solutions for colliding plane waves exist, even having infinitely many parameters, in
which this invariant does not diverge. In these cases, the singularity at α = 0 corresponds to a
Killing–Cauchy horizon through which the space-time can be extended.

The general solution of the main equation (13) can be expressed (exactly as for vacuum
Gowdy cosmologies) in terms of the coordinates α = 1

2(ξ − η) and β = 1
2(ξ + η) in the form

ψ =
∫ ∞

−∞

[
a(ω)J0(ωα) + b(ω)Y0(ωα)

]
eiωβdω, (16)

where J0(ωα) and Y0(ωα) are Bessel functions of the first and second kinds of zero order, and
a(ω) and b(ω) are arbitrary functions of the parameter ω. The terms which involve J0(ωα)
remain well behaved on the singularity at α = 0, while the terms which involve Y0(ωα) diverge
logarithmically (the presence of some terms of this type is necessary to satisfy the initial data).

In his analysis of the asymptotic behaviour of colliding plane wave space-times, Yurtsever
[9] has shown that, for any timelike geodesic which approaches the singularity α = 0, the metric
asymptotically approaches that of a particular Kasner solution. However, the particular Kasner
exponents vary for geodesics which approach different points on the singularity. It follows that
the focussing singularity is generally a curvature singularity. The only exception is that in
which the metric approaches that of the degenerate (flat) Kasner solution at all points over
the hypersurface α = 0. In this case, the focussing hypersurface is a Killing–Cauchy horizon
across which space-time can be extended. Such solutions are characterised by the asymptotic
behaviour

ψ(ξ, η) � log α − B(β) or ψ(ξ, η) � B(β) (17)

as α → 0, where B(β) is an arbitrary function which is independent of α. However, the
substitution ψ → log α−ψ simply corresponds to an interchange of the x, y coordinates. Thus,
the two possible conditions in (17) are physically equivalent, and the second can be adopted as
the criteria for a colliding plane wave solution with a horizon.

In considering perturbations of such solutions, Yurtsever [9] has rigorously shown that ar-
bitrarily small changes in the amplitude functions (specifically in the coefficients b(ω) in (16))
will cause variations in the Kasner parameters. He has reasonably concluded that, although
there are colliding plane wave space-times which contain a Killing–Cauchy horizon rather than
a space-like curvature singularity, these space-times are unstable against small perturbations of
the initial data and that ‘generic’ initial data leads to curvature singularities. However, it may
be observed that the perturbations which induce a curvature singularity in the interaction region
also generally have the effect that the relevant Weyl tensor component becomes unbounded at
the fold singularities in the initial regions II and III. In other words, the components which
introduce a curvature singularity into a space-time which otherwise has a horizon are associated
with unphysical initial data. Thus, the question that still needs to be addressed is that of the
stability of the horizon with respect to perturbations which correspond to bounded variations
of the initial gravitational waves prior to their collision.

5 Explicit solutions with horizons

Now consider the colliding plane wave solutions [10] for which

ψ =
(1 + a)

2
log α − k+

2
cosh−1

(
1 − β

α

)
− k−

2
cosh−1

(
1 + β

α

)
, (18)
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where a, k+ and k− are constants. When a = 0 and k+ = k− = 1, this is the Khan–
Penrose solution [11] which represents the collision of purely impulsive waves. It also includes
the degenerate Ferrari–Ibáñez solutions [12], for which the interaction region is locally isomorphic
to part of the Schwarzschild solution inside the horizon.

By showing that, as α → 0, the scalar invariant behaves as

Ψ0Ψ4 + 3Ψ2
2 → ξ,u

2η,v
2

28f2

(
(a + k+ + k−)2 − 1

)2(
(a + k+ + k−)2 + 3

)
α−4,

Feinstein and Ibáñez [13] have shown that colliding plane wave solutions given by (18) have a
horizon at α = 0 in region IV rather than a curvature singularity if a + k+ + k− = ±1. (This
also follows from the condition (17).)

It can be seen that the last two terms in the expansion (18) are required to describe the
necessary behaviour of the solution near the wavefronts ξ = 1 and η = −1 respectively, on which
they also become zero. Also, all three components of (18) diverge logarithmically as α → 0.
Thus, these terms must include components which arise from the Y0(ωα) terms in (16) together
with possible components which arise from the regular terms. In addition, it is clear that the
solutions (18) arise from the initial data functions

ψ+(ξ) = (1+a)
2 log

(
1+ξ
2

)
− k+

2 cosh−1
(

3−ξ
1+ξ

)
,

ψ−(η) = (1+a)
2 log

(
1−η
2

)
− k−

2 cosh−1
(

3+η
1−η

)
.

(19)

Thus the constants are determined by the initial data. Moreover, to satisfy the initial conditions
for colliding plane waves, it can be shown that k± must satisfy 1 ≤ |k±| <

√
2. It can then be

seen that the initial wave in region II is

Ψ4+ = − k+ξ,u

2
√

2(1 − ξ)
δ(u) − ξ,u

2

4(1 + ξ)2

[
a(1 − a2) − 3

√
2a2k+√
1 − ξ

− 6 a k2
+

(1 − ξ)
+

2
√

2k+(1 − k2
+)

(1 − ξ)3/2

]
,

which, as ξ → −1, behaves as

Ψ4+ → (a + k+)
4

[
(a + k+)2 − 1

] ξ,u
2

(1 + ξ)2
.

This clearly diverges unless a + k+ has the values 0, +1 or −1. The opposing wave similarly
diverges as η → 1 unless a+k− has the values 0, +1 or −1. Thus, within this family of solutions,
initial waves which are bounded as ξ → −1 or η → 1 and which give rise to solutions with a
Killing–Cauchy horizon can only occur in a very limited number of possible cases. In fact, the
only possibility up to a sign occurs when a = −1 and k+ = k− = 1. This is precisely the
degenerate Ferrari–Ibáñez solution with a horizon [12].

Feinstein and Ibáñez [13] have also shown that the above result can be extended to solu-
tions in which ψ is given by (18) plus an arbitrary regular function that can be expressed as∫ ∞
−∞ a(ω)J0(ωα)eiωβdω as in (16). (This is currently the widest explicitly known class of col-

liding plane wave solutions with a horizon.) It follows that perturbations which correspond to
variations in the arbitrary function a(ω) do not alter the character of the horizon at α = 0.
On the other hand, perturbations of any of the parameters a or k± lead to the occurrence of
a curvature singularity in region IV and also give rise to to divergencies in the initial waves.
Perturbations corresponding to additional components of b(ω) in (16) similarly introduce both
a curvature singularity in the interaction region and divergencies in the initial waves.

6 The stability of solutions with horizons

From the above discussion, it may be concluded that some perturbations which indicate that
horizons in colliding plane wave space-times are unstable correspond to unbounded perturbations
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of the initial data. On the other hand, such horizons appear to be stable with respect to per-
turbations which correspond to arbitrary variations in the function a(ω). In this case, however,
although the corresponding perturbations of the initial waves are bounded, this corresponds to
a situation in which the perturbation of one wave is exactly correlated with the perturbation of
the other. Thus, it is not possible to perturb the initial data on one characteristic while keeping
constant those on the other and at the same time preserving the character of the horizon in the
interaction region. It follows that, for the above explicit solutions at least, the horizon must be
unstable with respect to small independent perturbations of the initial data.

To demonstrate the generic instability of any colliding plane wave solution with a horizon,
consider a perturbation for which the initial data is given by

ψ+(ξ) = ψb+(ξ) + R+(ξ), ψ−(η) = ψb−(η), (20)

where ψb+(ξ) and ψb−(η) are the initial data which lead to a background solution with a horizon,
and R+(ξ) is a perturbation function which is bounded for ξ ∈ [−1, 1] and such that R+,ξ → 0
as ξ → −1. i.e. a perturbation has been included in one initial wave only and, when R+(ξ) = 0,
a horizon occurs in the interaction region.

Use can now be made of the solution of the characteristic initial value problem for colliding
plane waves given by Hauser and Ernst [4] and implemented in [7]. However, it is appropriate to
present this in a slightly modified form which is more clearly related to that of the general non-
linear case described in [8]. In this method, it is first necessary to calculate the initial spectral
amplitude functions A+(ζ+) and A−(ζ−) from the initial data functions ψ+(ξ) and ψ−(η) using
the integrals

A+(ζ+) = − 1
π
√

1 − ζ+

∫ 1

ζ+

ψ+,ξ√
ξ − ζ+

dξ, A−(ζ−) =
1

π
√

ζ− + 1

∫ ζ−

−1

ψ−,η√
ζ− − η

dη. (21)

The solution in the interaction region can then be expressed as

ψ(ξ, η) =
∫ 1

ξ

√
1 − ζ+

√
ζ+ + 1√

ζ+ − ξ
√

ζ+ − η
A+(ζ+) dζ+ +

∫ η

−1

√
1 − ζ−

√
ζ− + 1√

ξ − ζ−
√

η − ζ−
A−(ζ−) dζ−. (22)

This method, which is based on the Abel transform, is linear. Thus, when the perturbation
vanishes (i.e. when R+(ξ) = 0), the resulting solution would be just the background solution
ψb(ξ, η) which contains a horizon. However, the perturbation term in (20) would lead to an
additional perturbation component in the initial spectral data given by

Ap+(ζ+) = − 1
π
√

1 − ζ+

∫ 1

ζ+

R+,ξ√
ξ − ζ+

dξ, Ap−(ζ−) = 0,

and this would lead to the solution in the interaction region being given by

ψ = ψb + ψp, where ψp =
∫ 1

ξ

√
1 − ζ+

√
ζ+ + 1√

ζ+ − ξ
√

ζ+ − η
Ap+(ζ+) dζ+. (23)

It can then be shown that the scalar invariant Ψ0Ψ4 + 3Ψ2
2 diverges as α → 0 (actually, it is

the component Ψ2 which diverges), unless ψp,ξ − ψp,η → 0 in this limit. (This is equivalent to
the condition (17).)

However, the perturbation R+(ξ) is arbitrary and it is therefore possible to consider the com-
ponent Ap+(ζ+) to be an arbitrary bounded function satisfying limζ+→1 (

√
1 − ζ+ Ap+(ζ+)) = 0.

Moreover, it can be seen that

ψp,ξ − ψp,η =
∫ 1

ξ

√
ζ+ − η√
ζ+ − ξ

d
dζ+

[√
1 − ζ+

√
ζ+ + 1

(ζ+ − η)
Ap+(ζ+)

]
dζ+, (24)

which does not necessarily approach zero as α → 0 for an arbitrary choice of Ap+(ζ+). (Indeed,
it may well be unbounded, but this stronger result is not needed.) It can therefore be concluded
that a perturbation of one initial wave will generically lead to a scalar polynomial curvature
singularity in the interaction region in place of the horizon. i.e. the Killing–Cauchy horizon is
unstable with respect to the perturbation (20).
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7 Conclusion

Colliding plane wave solutions which contain a Killing–Cauchy horizon, only occur in very
particular circumstances. Moreover, colliding plane wave space-times which are generated by
bounded initial waves (apart from impulsive components on the shock fronts) and possess a
Killing–Cauchy horizon form a highly restricted subclass of these solutions. It has been shown
above that the only permitted perturbations of this subclass which preserve such a horizon are
those in which perturbations of the two approaching waves are strongly correlated. However,
when the initial waves are perturbed independently, then the horizon in the interaction region
is necessarily replaced by a scalar polynomial curvature singularity. It is therefore concluded
that the Killing–Cauchy horizon which sometimes occurs in colliding plane wave space-times is
unstable with respect to general bounded perturbations of the initial waves.

The above discussion has concentrated entirely on the “linear case” in which the approach-
ing gravitational waves have constant and aligned polarization. However, it is expected that
the behaviour of the nonlinear case in which the initial waves have variable or non-aligned po-
larizations, or include electromagnetic waves, would be qualitatively similar. This expectation
is supported by the arguments of Yurtsever [14] for the vacuum case, but further analysis is
required.
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