15 research outputs found

    An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma

    Get PDF
    Abstract Background Lenalidomide is an immunomodulatory agent with antitumor activity in B-cell malignancies. This phase II trial aimed to demonstrate the safety and efficacy of lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), follicular grade 3 lymphoma (FL-III), or transformed lymphoma (TL). Methods Patients received oral lenalidomide 25 mg on days 1–21 every 28 days as tolerated or until progression. The primary end point was overall response rate (ORR). Results Two hundred and seventeen patients enrolled and received lenalidomide. The ORR was 35% (77/217), with 13% (29/217) complete remission (CR), 22% (48/217) partial remission, and 21% (45/217) with stable disease. The ORR for DLBCL was 28% (30/108), 42% (24/57) for MCL, 42% (8/19) for FL-III, and 45% (15/33) for TL. Median progression-free survival for all 217 patients was 3.7 months [95% confidence interval (CI) 2.7–5.1]. For 77 responders, the median response duration lasted 10.6 months (95% CI 7.0–NR). Median response duration was not reached in 29 patients who achieved a CR and in responding patients with FL-III or MCL. The most common adverse event was myelosuppression with grade 4 neutropenia and thrombocytopenia in 17% and 6%, respectively. Conclusion Lenalidomide is well tolerated and produces durable responses in patients with relapsed or refractory aggressive non-Hodgkin's lymphoma

    Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies

    Get PDF
    CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxan™), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalin™) and I-131 tositumomab (Bexxar™). Radiation therapy effects are due to beta emissions with path lengths of 1–5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%–90% in low-grade and follicular lymphoma and 40%–50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement

    Search for the decay K+π+ννˉK^+\to \pi^+ \nu \bar\nu in the momentum region Pπ<195 MeV/cP_\pi < 195 {\rm ~MeV/c}

    Full text link
    We have searched for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar\nu in the kinematic region with pion momentum below the K+π+π0K^+ \to \pi^+ \pi^0 peak. One event was observed, consistent with the background estimate of 0.73±0.180.73\pm 0.18. This implies an upper limit on B(K+π+ννˉ)<4.2×109B(K^+ \to \pi^+ \nu \bar\nu)< 4.2\times 10^{-9} (90% C.L.), consistent with the recently measured branching ratio of (1.570.82+1.75)×1010(1.57^{+1.75}_{-0.82}) \times 10^{-10}, obtained using the standard model spectrum and the kinematic region above the K+π+π0K^+ \to \pi^+ \pi^0 peak. The same data were used to search for K+π+X0K^+ \to \pi^+ X^0, where X0X^0 is a weakly interacting neutral particle or system of particles with 150<MX0<250 MeV/c2150 < M_{X^0} < 250 {\rm ~MeV/c^2}.Comment: 4 pages, 2 figure

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Further search for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar \nu in the momentum region P < 195 MeV/c

    Full text link
    We report the results of a search for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar \nu in the kinematic region with π+\pi^+ momentum 140<P<195140 < P < 195 MeV/c using the data collected by the E787 experiment at BNL. No events were observed. When combined with our previous search in this region, one candidate event with an expected background of 1.22±0.241.22 \pm 0.24 events results in a 90% C.L. upper limit of 2.2×1092.2 \times 10^{-9} on the branching ratio of K+π+ννˉK^+ \to \pi^+ \nu \bar \nu. We also report improved limits on the rates of K+π+X0K^+ \to \pi^+ X^0 and K+π+X1X2K^+ \to \pi^+ X^1 X^2 where X0,X1,X2X^0, X^1, X^2 are hypothetical, massless, long-lived neutral particles.Comment: 5 pages, 3 figures, Accepted for publication in Phys. Rev.
    corecore