1,514 research outputs found
Differential Geometry applied to Acoustics : Non Linear Propagation in Reissner Beams
Although acoustics is one of the disciplines of mechanics, its
"geometrization" is still limited to a few areas. As shown in the work on
nonlinear propagation in Reissner beams, it seems that an interpretation of the
theories of acoustics through the concepts of differential geometry can help to
address the non-linear phenomena in their intrinsic qualities. This results in
a field of research aimed at establishing and solving dynamic models purged of
any artificial nonlinearity by taking advantage of symmetry properties
underlying the use of Lie groups. The geometric constructions needed for
reduction are presented in the context of the "covariant" approach.Comment: Submitted to GSI2013 - Geometric Science of Informatio
A comparison of viral microneutralization and haemagglutination inhibition assays as measures of seasonal inactivated influenza vaccine immunogenicity in the first year after reduced intensity conditioning, lymphocyte depleted allogeneic haematopoietic stem cell transplant
Traditionally, immune response to influenza vaccines has been measured using the haemagglutination inhibition (HAI) assay. A broader repertoire of techniques including the sensitive viral microneutralization (VMN) assay is now recommended by the European Medicines Agency (EMA). Comparing HAI and VMN, we determined immune response to a trivalent 2015–2016 seasonal inactivated influenza vaccine (SIIV) administered to 28 recipients of allogeneic haematopoietic stem cell transplant (HSCT). Vaccination was within the first-year post-transplant at a median of 78.5 (24–363) days. The proportion of patients with baseline and post-vaccination HAI titres ≥ 1:40 were 28.6% and 25% for A(H1N1)pdm09, 14.3% at both timepoints for A(H3N2), and 32.1% and 25% for B(Phuket). Pre and Post-vaccination geometric mean titres(GMT) were higher by VMN than HAI for A(H1N1)pdm09 and A(H3N2), but lower for B(Phuket)(p= 0.05) for all components. A single seroconversion to A(H1N1) was detected by ELISA-VMN. None of patient age, lymphocyte count, days from transplant to vaccination, donor type, or graft-versus-host disease (GVHD) or immunosuppressive therapy (IST) at vaccination correlated with baseline or post-vaccination titres by either assay. This absence of seroresponse to SIIV in the first-year post HSCT highlights the need for novel immunogenic vaccination formulations and schedules in this high-risk population
Glimpses of the Octonions and Quaternions History and Todays Applications in Quantum Physics
Before we dive into the accessibility stream of nowadays indicatory
applications of octonions to computer and other sciences and to quantum physics
let us focus for a while on the crucially relevant events for todays revival on
interest to nonassociativity. Our reflections keep wandering back to the
two square identity and then via the four
square identity up to the eight square identity.
These glimpses of history incline and invite us to retell the story on how
about one month after quaternions have been carved on the bridge
octonions were discovered by , jurist and
mathematician, a friend of . As for today we just
mention en passant quaternionic and octonionic quantum mechanics,
generalization of equations for octonions and triality
principle and group in spinor language in a descriptive way in order not
to daunt non specialists. Relation to finite geometries is recalled and the
links to the 7stones of seven sphere, seven imaginary octonions units in out of
the cave reality applications are appointed . This way we are welcomed
back to primary ideas of , and other distinguished
fathers of quantum mechanics and quantum gravity foundations.Comment: 26 pages, 7 figure
Chemical Mediation of Oviposition by Anopheles Mosquitoes : a Push-Pull System Driven by Volatiles Associated with Larval Stages
The oviposition behavior of mosquitoes is mediated by chemical cues. In the malaria mosquito Anopheles gambiae, conspecific larvae produce infochemicals that affect this behavior. Emanations from first instar larvae proved strongly attractive to gravid females, while those from fourth instars caused oviposition deterrence, suggesting that larval developmental stage affected the oviposition choice of the female mosquito. We examined the nature of these chemicals by headspace collection of emanations of water in which larvae of different stages were developing. Four chemicals with putative effects on oviposition behavior were identified: dimethyldisulfide (DMDS) and dimethyltrisulfide (DMTS) were identified in emanations from water containing fourth instars; nonane and 2,4-pentanedione (2,4-PD) were identified in emanations from water containing both first and fourth instars. Dual-choice oviposition studies with these compounds were done in the laboratory and in semi-field experiments in Tanzania. In the laboratory, DMDS and DMTS were associated with oviposition-deterrent effects, while results with nonane and 2,4-PD were inconclusive. In further studies DMDS and DMTS evoked egg retention, while with nonane and 2,4-PD 88% and 100% of female mosquitoes, respectively, laid eggs. In dual-choice semi-field trials DMDS and DMTS caused oviposition deterrence, while nonane and 2,4-PD evoked attraction, inducing females to lay more eggs in bowls containing these compounds compared to the controls. We conclude that oviposition of An. gambiae is mediated by these four infochemicals associated with conspecific larvae, eliciting either attraction or deterrence. High levels of egg retention occurred when females were exposed to chemicals associated with fourth instar larvae.</p
Demographic history shapes North American gray wolf genomic diversity and informs species' conservation
Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between N ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2–9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction
Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernel
We investigate the possibility that the late acceleration observed in the
rate of expansion of the universe is due to vacuum quantum effects arising in
curved spacetime. The theoretical basis of the vacuum cold dark matter (VCDM),
or vacuum metamorphosis, cosmological model of Parker and Raval is revisited
and improved. We show, by means of a manifestly nonperturbative approach, how
the infrared behavior of the propagator (related to the large-time asymptotic
form of the heat kernel) of a free scalar field in curved spacetime causes the
vacuum expectation value of its energy-momentum tensor to exhibit a resonance
effect when the scalar curvature R of the spacetime reaches a particular value
related to the mass of the field. we show that the back reaction caused by this
resonance drives the universe through a transition to an accelerating expansion
phase, very much in the same way as originally proposed by Parker and Raval.
Our analysis includes higher derivatives that were neglected in the earlier
analysis, and takes into account the possible runaway solutions that can follow
from these higher-derivative terms. We find that the runaway solutions do not
occur if the universe was described by the usual classical FRW solution prior
to the growth of vacuum energy-density and negative pressure (i.e., vacuum
metamorphosis) that causes the transition to an accelerating expansion of the
universe in this theory.Comment: 33 pages, 3 figures. Submitted to Physical Review D15 (Dec 23, 2003).
v2: 1 reference added. No other change
Artificial Neural Networks Modeling to Reduce Industrial Air Pollution
Abstract. Nitric acid production plants emit small amounts of nitrogen oxides (NOx) to the environment. As the regulatory authorities demand the reduction of the resulting air pollution, existing plants are looking for economical ways to comply with this demand. Several Artificial Neural Networks (ANN) models were trained from several months of operating plant data to predict the NOx concentration in the tail gas, and their total amount emitted the environment. The training of the ANN model was done by the Guterman-Boger algorithm set that generates a non-random initial connection weights, suggests a small number of hidden neurons, avoids, and escapes from, local minima encountered during the training. The ANN models gave small errors, 0.6 % relative error on the NOx concentration prediction and 0.006 kg/hour on daily emission in the 20-45 kg NOx/hour range. Knowledge extraction from the trained ANN models revealed the underlying relationships between the plant operating variables and the NOx emission rate, especially the beneficial effect of cooling the absorbed gas and reticulating liquids in the absorption towers. Clustering the data by the patterns of the hidden neurons outputs of auto-associative ANN models of the same data revealed interesting insights
Spin interactions and switching in vertically tunnel-coupled quantum dots
We determine the spin exchange coupling J between two electrons located in
two vertically tunnel-coupled quantum dots, and its variation when magnetic (B)
and electric (E) fields (both in-plane and perpendicular) are applied. We
predict a strong decrease of J as the in-plane B field is increased, mainly due
to orbital compression. Combined with the Zeeman splitting, this leads to a
singlet-triplet crossing, which can be observed as a pronounced jump in the
magnetization at in-plane fields of a few Tesla, and perpendicular fields of
the order of 10 Tesla for typical self-assembled dots. We use harmonic
potentials to model the confining of electrons, and calculate the exchange J
using the Heitler-London and Hund-Mulliken technique, including the long-range
Coulomb interaction. With our results we provide experimental criteria for the
distinction of singlet and triplet states and therefore for microscopic spin
measurements. In the case where dots of different sizes are coupled, we present
a simple method to switch on and off the spin coupling with exponential
sensitivity using an in-plane electric field. Switching the spin coupling is
essential for quantum computation using electronic spins as qubits.Comment: 13 pages, 9 figure
- …