296 research outputs found

    Design of few-mode fibers with M-modes and low differential mode delay

    Get PDF
    In this paper, we investigate the design of few-mode fibers (FMFs) guiding 2 to 12 linearly polarized (LP) modes with low differential mode delay (DMD) over the C-band, suitable for long-haul transmission. Two different types of refractive index profile have been considered: a graded-core with a cladding trench (GCCT) profile and a multi-step-index (MSI) profile. The profiles parameters are optimized in order to achieve: the lowest possible DMD and macro-bend losses (MBL) lower than the ITU-T standard recommendation. The optimization results show that the MSI profiles present lower DMD than the minimum achieved with a GCCT profile. Moreover, it is shown that the optimum DMD and the MBL scale with the number of modes for both profiles. The optimum DMD obtained for 12 LP modes is lower than 3 ps/km using a GCCT profile and lower than 2.5 ps/km using a MSI profile. The optimization results reveal that the most preponderant parameter of the GCCT profile is the refractive index relative difference at the core center, Δnco. Reducing Δn co, the DMD is reduced at the expense of increasing the MBL. Regarding the MSI profiles, it is shown that 64 steps are required to obtain a DMD improvement considering 12 LP modes. Finally, the impact of the fabrication margins on the optimum DMD is analyzed. The probability of having a manufactured FMF with 12 LP modes and DMD lower than 12 ps/km is approximately 68% using a GCCT profile and 16% using a MSI profile

    Continuous Micro-Environments Associated Orchid Bees Benefit from an Atlantic Forest Remnant, Paraná State, Brazil

    Get PDF
    The fragmentation and habitat loss are the main causes of pollinators decline worldwide, however very little is known about the composition and distribution of neotropical pollinators along continuous micro-environments. To fill this gap, we carried out samplings of Euglossini bees in a continuous area of forest with micro-environments of primary (remnant) and secondary (regeneration) forest of Atlantic Forest. We evaluated the differences in the composition and uniformity of orchid bees in different micro-environments, in order to characterize the responses of the local environmental changes in the attraction of bees to chemical traps. Our results indicated that the composition and uniformity were similar between the two forest fragments studied here, although there are greater abundance of some species by micro-environments. We conclude that the characteristics of the sites in a continuous environment with primary and secondary forest do not seem to have an effect on the composition of the Euglossini fauna, and that the chemical substances are complementary in the attractiveness of the orchid bee males. Thus, our findings suggest that micro-environments in a continuous matrix near forest remnants can help to promote the reintegration of the orchid bee communities and contribute to the conservation of areas in process of forest regeneration

    Heat stress and ACTH administration on cortisol and insulin-like growth factor I (IGF-I) levels in lactating Holstein cows

    Get PDF
    Physiological and productive responses were studied in five Holstein cows in thermal comfort (T1), stress by exogenous adrenocorticotropic hormone (ACTH) administration (T2) and heat stress (T3) to compare acute and punctual stress (ACTH) and prolonged stress (heat stress). During T1 and T2, cows were housed in a climatic-free stall barn. In T3, the animals were kept in a climatic room (air temperature of 37°C from 08:00 to 13:00 h, and of 26°C from 14:00 to 07:00 h) for 7 days. Milk yield, rectal temperature (RT), respiratory rate (RR) and blood samples were obtained before, during and after all treatments. In T1 at 08:00 h, RT and RR were below the upper critical limit. Simultaneously, cortisol and insulin growth-factor I (IGF-I) were within the normal limits. After ACTH administration (T2), cortisol significantly increased, reaching maximum levels at 60 min and returning to basal levels at 300 min. However, IGF-I was not affected. During T3, Holstein cows did not effectively dissipate their body temperature and RT, RR and cortisol significantly increased. There was a 26.6% reduction in milk production after heat stress (P < .05). Prolonged heat stress was more stressful and cows had higher levels of CORT in T3 than in T2 even before the increase in body temperature. Although the total amount of cortisol and IGF-I presented a negative and significant Pearson correlation (r = −0.79), IGF-I was not significantly influenced by heat stress or ACTH administration, and the relationship between IGF-I and heat stress remains controversial

    Vias de Sinalização da Insulina

    Get PDF
    Insulin is an anabolic hormone with powerful metabolic effects. The events after insulin binds to its receptor are highly regulated and specific. Defining the key steps that lead to the specificity in insulin signaling presents a major challenge to biochemical research, but the outcome should offer new therapeutic approaches for treatment of patients suffering from insulin-resistant states, including type 2 diabetes. The insulin receptor belongs to the large family of growth factor receptors with intrinsic tyrosine kinase activity. Following insulin binding, the receptor undergoes autophosphorylation on multiple tyrosine residues. This results in activation of the receptor kinase and tyrosine phosphorylation of a family of insulin receptor substrate (IRS) proteins. Like other growth factors, insulin uses phosphorylation and the resultant protein-protein interactions as essential tools to transmit and compartmentalize its signal. These intracellular protein-protein interactions are pivotal in transmitting the signal from the receptor to the final cellular effect, such as translocation of vesicles containing GLUT4 glucose transporters from the intracellular pool to the plasma membrane, activation of glycogen or protein synthesis, and initiation of specific gene transcription.A insulina é um hormônio anabólico com efeitos metabólicos potentes. Os eventos que ocorrem após a ligação da insulina são específicos e estritamente regulados. Definir as etapas que levam à especificidade deste sinal representa um desafio para as pesquisas bioquímicas, todavia podem resultar no desenvolvimento de novas abordagens terapêuticas para pacientes que sofrem de estados de resistência à insulina, inclusive o diabetes tipo 2. O receptor de insulina pertence a uma família de receptores de fatores de crescimento que têm atividade tirosina quinase intrínseca. Após a ligação da insulina o receptor sofre autofosforilação em múltiplos resíduos de tirosina. Isto resulta na ativação da quinase do receptor e conseqüente fosforilação em tirosina de um a família de substratos do receptor de insulina (IRS). De forma similar a outros fatores de crescimento, a insulina usa fosforilação e interações proteína-proteína como ferramentas essenciais para transmitir o sinal. Estas interações proteína-proteína são fundamentais para transmitir o sinal do receptor em direção ao efeito celular final, tais como translocação de vesículas contendo transportadores de glicose (GLUT4) do pool intracelular para a membrana plasmática, ativação da síntese de glicogênio e de proteínas, e transcrição de genes específicos.41942
    corecore