42 research outputs found

    Evaluation of regression models in metabolic physiology: predicting fluxes from isotopic data without knowledge of the pathway

    Get PDF
    This study explores the ability of regression models, with no knowledge of the underlying physiology, to estimate physiological parameters relevant for metabolism and endocrinology. Four regression models were compared: multiple linear regression (MLR), principal component regression (PCR), partial least-squares regression (PLS) and regression using artificial neural networks (ANN). The pathway of mammalian gluconeogenesis was analyzed using [U−(13)C]glucose as tracer. A set of data was simulated by randomly selecting physiologically appropriate metabolic fluxes for the 9 steps of this pathway as independent variables. The isotope labeling patterns of key intermediates in the pathway were then calculated for each set of fluxes, yielding 29 dependent variables. Two thousand sets were created, allowing independent training and test data. Regression models were asked to predict the nine fluxes, given only the 29 isotopomers. For large training sets (>50) the artificial neural network model was superior, capturing 95% of the variability in the gluconeogenic flux, whereas the three linear models captured only 75%. This reflects the ability of neural networks to capture the inherent non-linearities of the metabolic system. The effect of error in the variables and the addition of random variables to the data set was considered. Model sensitivities were used to find the isotopomers that most influenced the predicted flux values. These studies provide the first test of multivariate regression models for the analysis of isotopomer flux data. They provide insight for metabolomics and the future of isotopic tracers in metabolic research where the underlying physiology is complex or unknown

    Assessing contextual descriptive features for plot-based classification of urban areas

    Full text link
    A methodology for mapping urban land-use types integrating information from multiple data sources (high spatial resolution imagery, LiDAR data, and cadastral plots) is presented. A large set of complementary descriptive features that allow distinguishing different urban structures (historical, urban, residential, and industrial) is extracted and, after a selection process, a plot-based image classification approach applied, facilitating to directly relate the classification results and the urban descriptive parameters computed to the existent land-use/land-cover units in geospatial databases. The descriptive features are extracted by considering different hierarchical scale levels with semantic meaning in urban environments: buildings, plots, and urban blocks. Plots are characterised by means of image-based (spectral and textural), three-dimensional, and geometrical features. In addition, two groups of contextual features are defined: internal and external. Internal contextual features describe the main land cover types inside the plot (buildings and vegetation). External contextual features describe each object in terms of the properties of the urban block to which it belongs. After the evaluation in an heterogeneous Mediterranean urban area, the land-use classification accuracy values obtained show that the complementary descriptive features proposed improve the characterisation of urban typologies. A progressive introduction of the different groups of descriptive features in the classification tests show how the subsequent addition of internal and external contextual features have a positive effect by increasing the final accuracy of the urban classes considered in this study. © 2012 Elsevier B.V.The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation and FEDER in the framework of the projects CGL2009-14220 and CGL2010-19591/BTE, and the support of the Spanish Instituto Geografico Nacional (IGN).Hermosilla, T.; Ruiz Fernández, LÁ.; Recio Recio, JA.; Cambra López, M. (2012). Assessing contextual descriptive features for plot-based classification of urban areas. Landscape and Urban Planning. 106(1):124-137. doi:10.1016/j.landurbplan.2012.02.008S124137106

    A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat.

    Get PDF
    Confirmation of pregnancy viability (presence of fetal cardiac activity) and diagnosis of fetal presentation (head or buttock in the maternal pelvis) are the first essential components of ultrasound assessment in obstetrics. The former is useful in assessing the presence of an on-going pregnancy and the latter is essential for labour management. We propose an automated framework for detection of fetal presentation and heartbeat from a predefined free-hand ultrasound sweep of the maternal abdomen. Our method exploits the presence of key anatomical sonographic image patterns in carefully designed scanning protocols to develop, for the first time, an automated framework allowing novice sonographers to detect fetal breech presentation and heartbeat from an ultrasound sweep. The framework consists of a classification regime for a frame by frame categorization of each 2D slice of the video. The classification scores are then regularized through a conditional random field model, taking into account the temporal relationship between the video frames. Subsequently, if consecutive frames of the fetal heart are detected, a kernelized linear dynamical model is used to identify whether a heartbeat can be detected in the sequence. In a dataset of 323 predefined free-hand videos, covering the mother's abdomen in a straight sweep, the fetal skull, abdomen, and heart were detected with a mean classification accuracy of 83.4%. Furthermore, for the detection of the heartbeat an overall classification accuracy of 93.1% was achieved

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link
    corecore