2,218 research outputs found

    Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point

    Full text link
    We report the details and revised analysis of an experiment to measure the specific heat of helium with subnanokelvin temperature resolution near the lambda point. The measurements were made at the vapor pressure spanning the region from 22 mK below the superfluid transition to 4 uK above. The experiment was performed in earth orbit to reduce the rounding of the transition caused by gravitationally induced pressure gradients on earth. Specific heat measurements were made deep in the asymptotic region to within 2 nK of the transition. No evidence of rounding was found to this resolution. The optimum value of the critical exponent describing the specific heat singularity was found to be a = -0.0127+ - 0.0003. This is bracketed by two recent estimates based on renormalization group techniques, but is slightly outside the range of the error of the most recent result. The ratio of the coefficients of the leading order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002, which agrees well with a recent estimate. By combining the specific heat and superfluid density exponents a test of the Josephson scaling relation can be made. Excellent agreement is found based on high precision measurements of the superfluid density made elsewhere. These results represent the most precise tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure

    Head-to-head comparison of length of stay, patients' outcome and satisfaction in Switzerland before and after SwissDRG-Implementation in 2012 in 2012: an observational study in two tertiary university centers.

    Get PDF
    On 1 January 2012 Swiss Diagnosis Related Groups (DRG), a new uniform payment system for in-patients was introduced in Switzerland with the intention to replace a "cost-based" with a "case-based" reimbursement system to increase efficiency. With the introduction of the new payment system we aim to answer questions raised regarding length of stay as well as patients' outcome and satisfaction. This is a prospective, two-centre observational cohort study with data from University Hospital Basel and the Cantonal Hospital Aarau, Switzerland, from January to June 2011 and 2012, respectively. Consecutive in-patients with the main diagnosis of either community-acquired pneumonia, exacerbation of COPD, acute heart failure or hip fracture were included. A questionnaire survey was sent out after discharge investigating changes before and after SwissDRG implementation. Our primary endpoint was LOS. Of 1,983 eligible patients 841 returned the questionnaire and were included into the analysis (429 in 2011, 412 in 2012). The median age was 76.7 years (50.8% male). Patients in the two years were well balanced in regard to main diagnoses and co-morbidities. Mean LOS in the overall patient population was 10.0 days and comparable between the 2011 cohort and the 2012 cohort (9.7 vs 10.3; p = 0.43). Overall satisfaction with care changed only slightly after introduction of SwissDRG and remained high (89.0% vs 87.8%; p = 0.429). Investigating the influence of the implementation of SwissDRG in 2012 regarding LOS patients' outcome and satisfaction, we found no significant changes. However, we observed some noteworthy trends, which should be monitored closely

    Vector Meson Photoproduction from the BFKL Equation II: Phenomenology

    Full text link
    Diffractive vector meson photoproduction accompanied by proton dissociation is studied for large momentum transfer. The process is described by the non-forward BFKL equation which we use to compare to data collected at the HERA collider.Comment: 39 pages, 29 figure

    Strange form factors of the proton: a new analysis of the neutrino (antineutrino) data of the BNL-734 experiment

    Full text link
    We consider ratios of elastic neutrino(antineutrino)-proton cross sections measured by the Brookhaven BNL-734 experiment and use them to obtain the neutral current (NC) over charged current (CC) neutrino-antineutrino asymmetry. We discuss the sensitivity of these ratios and of the asymmetry to the electric, magnetic and axial strange form factors of the nucleon and to the axial cutoff mass M_A. We show that the effects of the nuclear structure and interactions on the asymmetry and, in general, on ratios of cross sections are negligible. We find some restrictions on the possible values of the parameters characterizing the strange form factors. We show that a precise measurement of the neutrino-antineutrino asymmetry would allow the extraction of the axial and vector magnetic strange form factors in a model independent way. The neutrino-antineutrino asymmetry turns out to be almost independent on the electric strange form factor and on the axial cutoff mass.Comment: 12 page

    Nuclear transparencies in relativistic A(e,e'p) models

    Get PDF
    Relativistic and unfactorized calculations for the nuclear transparency extracted from exclusive A(e,e'p) reactions for 0.3 \leq Q^2 \leq 10 (GeV/c)^2 are presented for the target nuclei C, Si, Fe and Pb. For Q^2 \geq 0.6 (GeV/c)^2, the transparency results are computed within the framework of the recently developed relativistic multiple-scattering Glauber approximation (RMSGA). The target-mass and Q^2 dependence of the RMSGA predictions are compared with relativistic distorted-wave impulse approximation (RDWIA) calculations. Despite the very different model assumptions underlying the treatment of the final-state interactions in the RMSGA and RDWIA frameworks, they predict comparable nuclear transparencies for kinematic regimes where both models are applicable.Comment: 15 pages, 4 figure

    Three loop renormalization of the SU(N_c) non-abelian Thirring model

    Get PDF
    We renormalize to three loops a version of the Thirring model where the fermion fields not only lie in the fundamental representation of a non-abelian colour group SU(N_c) but also depend on the number of flavours, N_f. The model is not multiplicatively renormalizable in dimensional regularization due to the generation of evanescent operators which emerge at each loop order. Their effect in the construction of the true wave function, mass and coupling constant renormalization constants is handled by considering the projection technique to a new order. Having constructed the MSbar renormalization group functions we consider other massless independent renormalization schemes to ensure that the renormalization is consistent with the equivalence of the non-abelian Thirring model with other models with a four-fermi interaction. One feature to emerge from the computation is the establishment of the fact that the SU(N_f) Gross Neveu model is not multiplicatively renormalizable in dimensional regularization. An evanescent operator arises first at three loops and we determine its associated renormalization constant explicitly.Comment: 40 latex pages, 14 postscript figure

    Four loop wave function renormalization in the non-abelian Thirring model

    Get PDF
    We compute the anomalous dimension of the fermion field with N_f flavours in the fundamental representation of a general Lie colour group in the non-abelian Thirring model at four loops. The implications on the renormalization of the two point Green's function through the loss of multiplicative renormalizability of the model in dimensional regularization due to the appearance of evanescent four fermi operators are considered at length. We observe the appearance of one new colour group Casimir, d_F^{abcd} d_F^{abcd}, in the final four loop result and discuss its consequences for the relation of the Knizhnik-Zamolodchikov critical exponents in the Wess Zumino Witten Novikov model to the non-abelian Thirring model. Renormalization scheme changes are also considered to ensure that the underlying Fierz symmetry broken by dimensional regularization is restored.Comment: 25 latex pages with 9 postscript figure

    Parity Violating Measurements of Neutron Densities

    Get PDF
    Parity violating electron nucleus scattering is a clean and powerful tool for measuring the spatial distributions of neutrons in nuclei with unprecedented accuracy. Parity violation arises from the interference of electromagnetic and weak neutral amplitudes, and the Z0Z^0 of the Standard Model couples primarily to neutrons at low Q2Q^2. The data can be interpreted with as much confidence as electromagnetic scattering. After briefly reviewing the present theoretical and experimental knowledge of neutron densities, we discuss possible parity violation measurements, their theoretical interpretation, and applications. The experiments are feasible at existing facilities. We show that theoretical corrections are either small or well understood, which makes the interpretation clean. The quantitative relationship to atomic parity nonconservation observables is examined, and we show that the electron scattering asymmetries can be directly applied to atomic PNC because the observables have approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.
    corecore