1,476 research outputs found

    Exploring the gravitationally lensed system HE 1104-1805: Near-IR Spectroscopy

    Get PDF
    (Abridged) A new technique for the spatial deconvolution of spectra is applied to near-IR (0.95 - 2.50 micron) NTT/SOFI spectra of the lensed, radio-quiet quasar HE 1104-1805. The continuum of the lensing galaxy is revealed between 1.5 and 2.5 micron. It is used in combination with previous optical and IR photometry to infer a plausible redshift in the range 0.8 < z < 1.2. Modeling of the system shows that the lens is probably composed of the red galaxy seen between the quasar images and a more extended component associated with a galaxy cluster with fairly low velocity dispersion (~ 575 km/s). The spectra of the two lensed images of the source show no trace of reddening at the redshift of the lens nor at the redshift of the source. Additionally, the difference between the spectrum of the brightest component a nd that of a scaled version of the faintest component is a featureless continuum. Broad and narrow emission lines, including the FeII features, are perfectly subtracted. The very good quality of our spectrum makes it possible to fit precisely the optical Fe II feature, taking into account the underlying continuum over a wide wavelength range. HE 1104-1805 can be classified as a weak Fe II emitter. Finally, the slope of the continuum in the brightest image is steeper than the continuum in the faintest image and supports the finding by Wisotzki et al. (1993) that the brightest image is microlensed. This is particularly interesting in view of the new source reconstruction methods from multiwavelength photometric monitoring.Comment: to be published in A&A, 8 pages, 9 postscript figure

    Resolved Stellar Populations of Super-Metal-Rich Star Clusters in the Bulge of M31

    Get PDF
    We have applied the MCS image deconvolution algorithm (Magain, Courbin & Sohy 1998) to HST/WFPC2 V, I data of three M31 bulge globular clusters (G170, G177, and G198) and control fields near each cluster. All three clusters are clearly detected, with an increase in stellar density with decreasing radius from the cluster centers; this is the first time that stars have been resolved in bulge clusters in the inner regions of another galaxy. From the RGB slopes of the clusters and the difference in I magnitude between the HB and the top of the RGB, we conclude that these three clusters all have roughly solar metallicity, in agreement with earlier integrated-light spectroscopic measurements. Our data support a picture whereby the M31 bulge clusters and field stars were born from the same metal-rich gas, early in the galaxy formation.Comment: 7 pages, 4 Postscript figures, accepted for publication in A&

    No Increase of the Red-Giant-Branch Tip Luminosity Toward the Center of M31

    Full text link
    We present observations with the Hubble Space Telescope Wide Field Planetary Camera 2 of three fields centered on super-metal-rich globular clusters in the bulge of M31. Our (I,V-I) color-magnitude diagrams reach as faint as I ~ 26.5 mag and clearly reveal the magnitude of the first ascent red giant branch (RGB) tip. We find that the apparent I magnitude of the RGB tip does not become brighter near the center of M31 as concluded by previous investigators. Our observations and artificial star experiments presented in this study strongly support the idea that previous very bright stars were likely the result of spurious detections of blended stars due to crowding in lower resolution images. On the contrary, our observations indicate that, at a mean projected galactocentric distance of 1.1 kpc, the RGB tip is some 1.3 magnitudes fainter than it is at 7 kpc. An analysis of this difference in RGB tip magnitude suggests that the M31 bulge stellar population has a mean metallicity close to that of the Sun.Comment: Accepted for publication in ApJ, June 20, 1999 issu

    A G1-like globular cluster in NGC 1023

    Full text link
    The structure of a very bright (MV = -10.9) globular cluster in NGC 1023 is analyzed on two sets of images taken with the Hubble Space Telescope. From careful modeling of King profile fits to the cluster image, a core radius of 0.55+/-0.1 pc, effective radius 3.7+/-0.3 pc and a central V-band surface brightness of 12.9+/-0.5 mag / square arcsec are derived. This makes the cluster much more compact than Omega Cen, but very similar to the brightest globular cluster in M31, G1 = Mayall II. The cluster in NGC 1023 appears to be very highly flattened with an ellipticity of about 0.37, even higher than for Omega Cen and G1, and similar to the most flattened clusters in the Large Magellanic Cloud.Comment: 14 pages, 3 figures, 1 table. Accepted for AJ, Oct 200

    Tidal spin-up of stars in dense stellar cusps around massive black holes

    Get PDF
    We show that main-sequence stars in dense stellar cusps around massive black holes are likely to rotate at a significant fraction of the centrifugal breakup velocity due to spin-up by hyperbolic tidal encounters. We use realistic stellar structure models to calculate analytically the tidal spin-up in soft encounters, and extrapolate these results to close and penetrating collisions using smoothed particle hydrodynamics simulations. We find that the spin-up falls off only slowly with distance from the black hole because the increased tidal coupling in slower collisions at larger distances compensates for the decrease in the stellar density. We apply our results to the stars near the massive black hole in the Galactic Center. Over their lifetime, ~1 Msol main sequence stars in the inner 0.3 pc of the Galactic Center are spun-up on average to ~10%--30% of the centrifugal breakup limit. Such rotation is ~20--60 times higher than is usual for such stars and may affect their subsequent evolution and their observed properties.Comment: 25 pages, 7 figures. Submitted to Ap

    Hermitian symmetric polynomials and CR complexity

    Full text link
    Properties of Hermitian forms are used to investigate several natural questions from CR Geometry. To each Hermitian symmetric polynomial we assign a Hermitian form. We study how the signature pairs of two Hermitian forms behave under the polynomial product. We show, except for three trivial cases, that every signature pair can be obtained from the product of two indefinite forms. We provide several new applications to the complexity theory of rational mappings between hyperquadrics, including a stability result about the existence of non-trivial rational mappings from a sphere to a hyperquadric with a given signature pair.Comment: 19 pages, latex, fixed typos, to appear in Journal of Geometric Analysi

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil

    Confirmation of two extended objects along the line of sight to PKS1830-211 with ESO-VLT adaptive optics imaging

    Full text link
    We report on new high-resolution near-infrared images of the gravitationally lensed radio source PKS1830-211, a quasar at z=2.507. These adaptive optics observations, taken with the Very Large Telescope (VLT), are further improved through image deconvolution. They confirm the presence of a second object along the line of sight to the quasar, in addition to the previously known spiral galaxy. This additional object is clearly extended in our images. However, its faint luminosity does not allow to infer any photometric redshift. If this galaxy is located in the foreground of PKS1830-211, it complicates the modeling of this system and decreases the interest in using PKS1830-211 as a means to determine H0 via the time delay between the two lensed images of the quasar.Comment: Accepted in A&A Letter

    Pixel-wise parameter adaptation for single-exposure extension of the image dynamic range

    Get PDF
    High dynamic range imaging is central in application fields like surveillance, intelligent transportation and advanced driving assistance systems. In some scenarios, methods for dynamic range extension based on multiple captures have shown limitations in apprehending the dynamics of the scene. Artifacts appear that can put at risk the correct segmentation of objects in the image. We have developed several techniques for the on-chip implementation of single-exposure extension of the dynamic range. We work on the upper extreme of the range, i. e. administering the available full-well capacity. Parameters are adapted pixel-wise in order to accommodate a high intra-scene range of illuminationsPeer reviewe

    The first detection of weak gravitational shear in infrared observations: Abell 1689

    Get PDF
    We present the first detection of weak gravitational shear at infrared wavelengths, using observations of the lensing cluster Abell 1689, taken with the SofI camera on the ESO-NTT telescope. The imprint of cluster lenses on the shapes of the background galaxy population has previously been harnessed at optical wavelengths, and this gravitational shear signal enables cluster mass distributions to be probed, independent of whether the matter is luminous or dark. At near-infrared wavelengths, the spectrophotometric properties of galaxies facilitate a clean selection of background objects for use in the lensing analysis. A finite-field mass reconstruction and application of the aperture mass (Map) statistic are presented. The probability that the peak of the Map detection S/N~5, arises from a chance alignment of background sources is only ~4.5*10^-7. The velocity dispersion of the best-fit singular isothermal sphere model for the cluster is sigma_1D=1030^{+70}_{-80} km/s, and we find a K-band mass-to-light ratio of ~40 M_solar/L_solar inside a 0.44 Mpc radius
    corecore