162 research outputs found

    Method and a system for controlling a lighting system

    Get PDF

    Photoinduced polycyclic aromatic hydrocarbon dehydrogenation: The competition between H- and H2-loss

    Get PDF
    PAHs constitute a major component of the interstellar medium carbon budget, locking up to 10--20% of the elemental carbon. Sequential fragmentation induced by energetic photons leads to the formation of new species, including fullerenes. However, the exact chemical routes involved in this process remain largely unexplored. In this work, we focus on the first photofragmentation steps, which involve the dehydrogenation of these molecules. For this, we consider a multidisciplinary approach, taking into account the results from experiments, DFT calculations, and modeling using dedicated Monte-Carlo simulations. By considering the simplest isomerization pathways --- i.e., hydrogen roaming along the edges of the molecule --- we are able to characterize the most likely photodissociation pathways for the molecules studied here. These comprise nine PAHs with clearly different structural properties. The formation of aliphatic-like side groups is found to be critical in the first fragmentation step and, furthermore, sets the balance of the competition between H- and H2-loss. We show that the presence of trio hydrogens, especially in combination with bay regions in small PAHs plays an important part in the experimentally established variations in the odd-to-even H-atom loss ratios. In addition, we find that, as PAH size increases, H2 formation becomes dominant, and sequential hydrogen loss only plays a marginal role. We also find disagreements between experiments and calculations for large, solo containing PAHs, which need to be accounted for. In order to match theoretical and experimental results, we have modified the energy barriers and restricted the H-hopping to tertiary atoms. The formation of H2 in large PAHs upon irradiation appears to be the dominant fragmentation channel, suggesting an efficient formation path for molecular hydrogen in PDRs.Comment: 17 pages, 13 figures, accepted for publication in A&

    Reaction Networks For Interstellar Chemical Modelling: Improvements and Challenges

    Full text link
    We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes -- ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination -- is reviewed. Emphasis is placed on those reactions that have been identified, by sensitivity analyses, as 'crucial' in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalysed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.Comment: Accepted for publication in Space Science Review

    Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations

    Get PDF
    Aims. This article aims to provide an alternative method of measuring the porosity of multi-phase composite ices from their refractive indices and of characterising how the abundance of a premixed contaminant (e.g., CO2) affects the porosity of water-rich ice mixtures during omni-directional deposition. Methods. We combine optical laser interference and extended effective medium approximations (EMAs) to measure the porosity of three astrophysically relevant ice mixtures: H2O:CO2=10:1, 4:1, and 2:1. Infrared spectroscopy is used as a benchmarking test of this new laboratory-based method. Results. By independently monitoring the O-H dangling modes of the different water-rich ice mixtures, we confirm the porosities predicted by the extended EMAs. We also demonstrate that CO2 premixed with water in the gas phase does not significantly affect the ice morphology during omni-directional deposition, as long as the physical conditions favourable to segregation are not reached. We propose a mechanism in which CO2 molecules diffuse on the surface of the growing ice sample prior to being incorporated into the bulk and then fill the pores partly or completely, depending on the relative abundance and the growth temperature.Comment: 9 pages, 6 figures, 1 table. Accepted for publication in A&

    A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures

    Get PDF
    We discuss the design, operation, and performance of a vacuum setup constructed for use in zero (or reduced) gravity conditions to initiate collisions of fragile millimeter-sized particles at low velocity and temperature. Such particles are typically found in many astronomical settings and in regions of planet formation. The instrument has participated in four parabolic flight campaigns to date, operating for a total of 2.4 hours in reduced gravity conditions and successfully recording over 300 separate collisions of loosely packed dust aggregates and ice samples. The imparted particle velocities achieved range from 0.03-0.28 m s^-1 and a high-speed, high-resolution camera captures the events at 107 frames per second from two viewing angles separated by either 48.8 or 60.0 degrees. The particles can be stored inside the experiment vacuum chamber at temperatures of 80-300 K for several uninterrupted hours using a built-in thermal accumulation system. The copper structure allows cooling down to cryogenic temperatures before commencement of the experiments. Throughout the parabolic flight campaigns, add-ons and modifications have been made, illustrating the instrument flexibility in the study of small particle collisions.Comment: D. M. Salter, D. Hei{\ss}elmann, G. Chaparro, G. van der Wolk, P. Rei{\ss}aus, A. G. Borst, R. W. Dawson, E. de Kuyper, G. Drinkwater, K. Gebauer, M. Hutcheon, H. Linnartz, F. J. Molster, B. Stoll, P. C. van der Tuijn, H. J. Fraser, and J. Blu

    Infrared Spectra of Hexa-peri-hexabenzocoronene Cations: HBC^+ and HBC^2+

    Get PDF
    Laboratory astrophysics and astrochemistr

    Iterative interference cancellation and channel estimation for mobile OFDM

    Full text link

    A Formal Study of the Privacy Concerns in Biometric-Based Remote Authentication Schemes

    Get PDF
    With their increasing popularity in cryptosystems, biometrics have attracted more and more attention from the information security community. However, how to handle the relevant privacy concerns remains to be troublesome. In this paper, we propose a novel security model to formalize the privacy concerns in biometric-based remote authentication schemes. Our security model covers a number of practical privacy concerns such as identity privacy and transaction anonymity, which have not been formally considered in the literature. In addition, we propose a general biometric-based remote authentication scheme and prove its security in our security model

    Clip Correction in Wireless LAN receivers

    Get PDF
    Abstract-OFDM signals suffer from a large Peak to Average Power Ratio, which requires large power back-offs in the transmit and receive chains. This paper presents a digital postprocessing method that mitigates clipping by the analog-to-digital converter (ADC) in the receiver. Clipped peaks cause spurious signals on empty subcarriers, which can be used to eliminate clipping artifacts and to recover the original signal. Simulations show that a significant reduction of 3 dB in the headroom of the A/D converter (ADC) is possible, when an elaborate MMSE clip correction algorithm is used. A simple algorithm still allows for 1 dB reduction of the headroom. As the ADC is consuming an ever increasing fraction of the total receiver power, the results are believed to be relevant for low-power design of OFDM receivers, for instance to prolong battery life of laptops and other portable WLAN devices

    A coincidence between a hydrocarbon plasma absorption spectrum and the lambda 5450 DIB

    Full text link
    The aim of this work is to link the broad lambda 5450 diffuse interstellar band (DIB) to a laboratory spectrum recorded through an expanding acetylene plasma. Cavity ring-down direct absorption spectra and astronomical observations of HD 183143 with the HERMES spectrograph on the Mercator Telescope in La Palma and the McKellar spectrograph on the DAO 1.2 m Telescope are compared. In the 543-547 nm region a broad band is measured with a band maximum at 545 nm and FWHM of 1.03(0.1) nm coinciding with a well-known diffuse interstellar band at lambda 5450 with FWHM of 0.953 nm. A coincidence is found between the laboratory and the two independent observational studies obtained at higher spectral resolution. This result is important, as a match between a laboratory spectrum and a - potentially lifetime broadened - DIB is found. A series of additional experiments has been performed in order to unambiguously identify the laboratory carrier of this band. This has not been possible. The laboratory results, however, restrict the carrier to a molecular transient, consisting of carbon and hydrogen.Comment: 6 pages, 3 figures, accepted for publication in A&
    corecore