913 research outputs found

    A radiation-hydrodynamics scheme valid from the transport to the diffusion limit

    Full text link
    We present in this paper the numerical treatment of the coupling between hydrodynamics and radiative transfer. The fluid is modeled by classical conservation laws (mass, momentum and energy) and the radiation by the grey moment M1M_1 system. The scheme introduced is able to compute accurate numerical solution over a broad class of regimes from the transport to the diffusive limits. We propose an asymptotic preserving modification of the HLLE scheme in order to treat correctly the diffusion limit. Several numerical results are presented, which show that this approach is robust and have the correct behavior in both the diffusive and free-streaming limits. In the last numerical example we test this approach on a complex physical case by considering the collapse of a gas cloud leading to a proto-stellar structure which, among other features, exhibits very steep opacity gradients.Comment: 29 pages, submitted to Journal of Computational physic

    A hierarchy of models related to nanoflows and surface diffusion

    Get PDF
    In last years a great interest was brought to molecular transport problems at nanoscales, such as surface diffusion or molecular flows in nano or sub-nano-channels. In a series of papers V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker proposed to use kinetic theory in order to analyze the mechanisms that determine mobility of molecules in nanoscale channels. This approach proved to be remarkably useful to give new insight on these issues, such as density dependence of the diffusion coefficient. In this paper we revisit these works to derive the kinetic and diffusion models introduced by V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker by using classical tools of kinetic theory such as scaling and systematic asymptotic analysis. Some results are extended to less restrictive hypothesis

    Radio Detection of Cosmic Ray Air Showers with Codalema

    Full text link
    Studies of the radio detection of Extensive Air Showers is the goal of the demonstrative experiment CODALEMA. Previous analysis have demonstrated that detection around 5.10165.10^{16} eV was achieved with this set-up. New results allow for the first time to study the topology of the electric field associated to EAS events on a event by event basis.Comment: 6 pages, 4 figures Proceedings of the Rencontres de Moriond, Very High Energy Phenomena in the Universe, La Thuile, Italy (March 12-19, 2005

    Radio Detection of Extensive Air Showers with CODALEMA

    Full text link
    The principle and performances of the CODALEMA experimental device, set up to study the possibility of high energy cosmic rays radio detection, are presented. Radio transient signals associated to cosmic rays have been identified, for which arrival directions and shower's electric field topologies have been extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.10^16 eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of UHECR at a larger scale.Comment: 4 pages and 3 figures. To appear in the Proceedings of the 29th ICRC, Pune (2005

    Determination of the Properties of Composite Materials Thanks to Digital Image Correlation Measurements

    Get PDF
    AbstractDesigning composite structures for civil aircrafts necessitates a better understanding of the damage and failure mechanisms occurring in these components through experimental test campaigns and associated numerical simulations. These experimental tests have been performed at Onera using different classical measurement techniques (LVDT sensor, strain gauges…) and digital image correlation (DIC). The additional information provided by DIC allows (i) to validate the boundary conditions of the tests, (ii) to cross-check the measurements with other techniques, (iii) to improve the understanding of the physical mechanisms and (iv) to validate the predictions of the finite element simulations

    Radio Detection of Cosmic Ray Extensive Air Showers: present status of the CODALEMA experiment

    Get PDF
    Data acquisition and analysis for the CODALEMA experiment, in operation for more than one year, has provided improved knowledge of the characteristics of this new device. At the same time, an important effort has been made to develop processing techniques for extracting transient signals from data containing interference.Comment: september 200

    Radiodetection of Cosmic Ray Extensive Air Showers

    Get PDF
    We present the characteristics and performance of a demonstration experiment devoted to the observation of ultra high- energy cosmic ray extensive air showers using a radiodetection technique. In a first step, one antenna narrowed band filtered acting as trigger, with a 4 σ\sigma threshold above sky background-level, was used to tag any radio transient in coincidence on the antenna array. Recently, the addition of 4 particle detectors has allowed us to observe cosmic ray events in coincidence with antennas
    corecore