66,471 research outputs found

    Earth Abundant Element Type I Clathrate Phases.

    Get PDF
    Earth abundant element clathrate phases are of interest for a number of applications ranging from photovoltaics to thermoelectrics. Silicon-containing type I clathrate is a framework structure with the stoichiometry A8-xSi46 (A = guest atom such as alkali metal) that can be tuned by alloying and doping with other elements. The type I clathrate framework can be described as being composed of two types of polyhedral cages made up of tetrahedrally coordinated Si: pentagonal dodecahedra with 20 atoms and tetrakaidecahedra with 24 atoms in the ratio of 2:6. The cation sites, A, are found in the center of each polyhedral cage. This review focuses on the newest discoveries in the group 13-silicon type I clathrate family: A₈E₈Si38 (A = alkali metal; E = Al, Ga) and their properties. Possible approaches to new phases based on earth abundant elements and their potential applications will be discussed

    Topologically Robust Transport of Photons in a Synthetic Gauge Field

    Get PDF
    Electronic transport in low dimensions through a disordered medium leads to localization. The addition of gauge fields to disordered media leads to fundamental changes in the transport properties. For example, chiral edge states can emerge in two-dimensional systems with a perpendicular magnetic field. Here, we implement a "synthetic'' gauge field for photons using silicon-on-insulator technology. By determining the distribution of transport properties, we confirm the localized transport in the bulk and the suppression of localization in edge states, using the "gold standard'' for localization studies. Our system provides a new platform to investigate transport properties in the presence of synthetic gauge fields, which is important both from the fundamental perspective of studying photonic transport and for applications in classical and quantum information processing.Comment: 4.5 pages, 3 figures and supplementary materia

    Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation

    Full text link
    In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother wavelets family. In this work we present the inversion formula and Parsval theorem for CCWT by virtue of the entangled state representation, which makes the CCWT theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.Comment: 4 pages no figur

    Edge Mode Combinations in the Entanglement Spectra of Non-Abelian Fractional Quantum Hall States on the Torus

    Get PDF
    We present a detailed analysis of bi-partite entanglement in the non-Abelian Moore-Read fractional quantum Hall state of bosons and fermions on the torus. In particular, we show that the entanglement spectra can be decomposed into intricate combinations of different sectors of the conformal field theory describing the edge physics, and that the edge level counting and tower structure can be microscopically understood by considering the vicinity of the thin-torus limit. We also find that the boundary entropy density of the Moore-Read state is markedly higher than in the Laughlin states investigated so far. Despite the torus geometry being somewhat more involved than in the sphere geometry, our analysis and insights may prove useful when adopting entanglement probes to other systems that are more easily studied with periodic boundary conditions, such as fractional Chern insulators and lattice problems in general.Comment: 13 pages, 8 figures, published version on PR

    Fractional Chern Insulators in Topological Flat bands with Higher Chern Number

    Get PDF
    Lattice models forming bands with higher Chern number offer an intriguing possibility for new phases of matter with no analogue in continuum Landau levels. Here, we establish the existence of a number of new bulk insulating states at fractional filling in flat bands with Chern number C=N>1C=N>1, forming in a recently proposed pyrochlore model with strong spin-orbit coupling. In particular, we find compelling evidence for a series of stable states at ν=1/(2N+1)\nu=1/(2N+1) for fermions as well as bosonic states at ν=1/(N+1)\nu=1/(N+1). By examining the topological ground state degeneracies and the excitation structure as well as the entanglement spectrum, we conclude that these states are Abelian. We also explicitly demonstrate that these states are nevertheless qualitatively different from conventional quantum Hall (multilayer) states due to the novel properties of the underlying band structure.Comment: 5+4 pages. Final version. Main text as published, some extra data in the supplementary materia

    The [Ne III] Jet of DG Tau and its Ionization Scenarios

    Full text link
    Forbidden neon emission from jets of low-mass young stars can be used to probe the underlying high-energy processes in these systems. We analyze spectra of the jet of DG Tau obtained with the Very Large Telescope/X-Shooter spectrograph in 2010. [Ne III] λ\lambda3869 is clearly detected in the innermost 3" microjet and the outer knot located at ∼\sim6".5. The velocity structure of the inner microjet can be decomposed into the low-velocity component (LVC) at ∼−70\sim -70 km/s and the high-velocity component (HVC) at ∼−180\sim -180 km/s. Based on the observed [Ne III] flux and its spatial extent, we suggest the origins of the [Ne III] emission regions and their relation with known X-ray sources along the jet. The flares from the hard X-ray source close to the star may be the main ionization source of the innermost microjet. The fainter soft X-ray source at 0".2 from the star may provide sufficient heating to help to sustain the ionization fraction against the recombination in the flow. The outer knot may be reionized by shocks faster than 100 km/s such that [Ne III] emission reappears and that the soft X-ray emission at 5".5 is produced. Velocity decomposition of the archival Hubble Space Telescope spectra obtained in 1999 shows that the HVC had been faster, with a velocity centroid of ∼−260\sim -260 km/s. Such a decrease in velocity may potentially be explained by the expansion of the stellar magnetosphere, changing the truncation radius and thus the launching speed of the jet. The energy released by magnetic reconnections during relaxation of the transition can heat the gas up to several tens of megakelvin and provide the explanation for on-source keV X-ray flares that ionize the neon microjet

    Velocity-Resolved [Ne III] from X-Ray Irradiated Sz 102 Microjets

    Full text link
    Neon emission lines are good indicators of high-excitation regions close to a young stellar system because of their high ionization potentials and large critical densities. We have discovered [Ne III]{\lambda}3869 emission from the microjets of Sz 102, a low-mass young star in Lupus III. Spectroastrometric analyses of two-dimensional [Ne III] spectra obtained from archival high-dispersion (R≈33,000R\approx 33,000) Very Large Telescope/UVES data suggest that the emission consists of two velocity components spatially separated by ~ 0."3, or a projected distance of ~ 60 AU. The stronger redshifted component is centered at ~ +21 km/s with a line width of ~ 140 km/s, and the weaker blueshifted component at ~ -90 km/s with a line width of ~ 190 km/s. The two components trace velocity centroids of the known microjets and show large line widths that extend across the systemic velocity, suggesting their potential origins in wide-angle winds that may eventually collimate into jets. Optical line ratios indicate that the microjets are hot (T≲1.6×104T\lesssim1.6\times10^4 K) and ionized (ne≳5.7×104n_e\gtrsim5.7\times10^4 cm−3^{-3}). The blueshifted component has ~ 13% higher temperature and ~ 46% higher electron density than the redshifted counterpart, forming a system of asymmetric pair of jets. The detection of the [Ne III]{\lambda}3869 line with the distinct velocity profile suggests that the emission originates in flows that may have been strongly ionized by deeply embedded hard X-ray sources, most likely generated by magnetic processes. The discovery of [Ne III]{\lambda}3869 emission along with other optical forbidden lines from Sz 102 support the picture of wide-angle winds surrounding magnetic loops in the close vicinity of the young star. Future high sensitivity X-ray imaging and high angular-resolution optical spectroscopy may help confirm the picture proposed.Comment: 33 pages, 9 figures, 2 tables; accepted for publication in the ApJ (minor typo and reference list fixed

    The Ultraviolet flash accompanying GRBs from neutron-rich internal shocks

    Full text link
    In the neutron-rich internal shocks model for Gamma-ray Burts (GRBs), the Lorentz factors (LFs) of ions shells are variable, so are the LFs of accompanying neutron shells. For slow neutron shells with a typical LF tens, the typical beta-decay radius reads R_{\beta,s} several 10^{14} cm, which is much larger than the typical internal shocks radius 10^{13} cm, so their impact on the internal shocks may be unimportant. However, as GRBs last long enough (T_{90}>20(1+z) s), one earlier but slower ejected neutron shell will be swept successively by later ejected ion shells in the range 10^{13}-10^{15} cm, where slow neutrons have decayed significantly. We show in this work that ion shells interacting with the beta-decay products of slow neutron shells can power a ultraviolet (UV) flash bright to 12th magnitude during the prompt gamma-ray emission phase or slightly delayed, which can be detected by the upcoming Satellite SWIFT in the near future.Comment: 6 pages (2 eps figures), accepted for publication in ApJ
    • …
    corecore