66,471 research outputs found
Earth Abundant Element Type I Clathrate Phases.
Earth abundant element clathrate phases are of interest for a number of applications ranging from photovoltaics to thermoelectrics. Silicon-containing type I clathrate is a framework structure with the stoichiometry A8-xSi46 (A = guest atom such as alkali metal) that can be tuned by alloying and doping with other elements. The type I clathrate framework can be described as being composed of two types of polyhedral cages made up of tetrahedrally coordinated Si: pentagonal dodecahedra with 20 atoms and tetrakaidecahedra with 24 atoms in the ratio of 2:6. The cation sites, A, are found in the center of each polyhedral cage. This review focuses on the newest discoveries in the group 13-silicon type I clathrate family: A₈E₈Si38 (A = alkali metal; E = Al, Ga) and their properties. Possible approaches to new phases based on earth abundant elements and their potential applications will be discussed
Topologically Robust Transport of Photons in a Synthetic Gauge Field
Electronic transport in low dimensions through a disordered medium leads to
localization. The addition of gauge fields to disordered media leads to
fundamental changes in the transport properties. For example, chiral edge
states can emerge in two-dimensional systems with a perpendicular magnetic
field. Here, we implement a "synthetic'' gauge field for photons using
silicon-on-insulator technology. By determining the distribution of transport
properties, we confirm the localized transport in the bulk and the suppression
of localization in edge states, using the "gold standard'' for localization
studies. Our system provides a new platform to investigate transport properties
in the presence of synthetic gauge fields, which is important both from the
fundamental perspective of studying photonic transport and for applications in
classical and quantum information processing.Comment: 4.5 pages, 3 figures and supplementary materia
Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation
In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex
continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother
wavelets family. In this work we present the inversion formula and Parsval
theorem for CCWT by virtue of the entangled state representation, which makes
the CCWT theory complete. A new orthogonal property of mother wavelet in
parameter space is revealed.Comment: 4 pages no figur
Edge Mode Combinations in the Entanglement Spectra of Non-Abelian Fractional Quantum Hall States on the Torus
We present a detailed analysis of bi-partite entanglement in the non-Abelian
Moore-Read fractional quantum Hall state of bosons and fermions on the torus.
In particular, we show that the entanglement spectra can be decomposed into
intricate combinations of different sectors of the conformal field theory
describing the edge physics, and that the edge level counting and tower
structure can be microscopically understood by considering the vicinity of the
thin-torus limit. We also find that the boundary entropy density of the
Moore-Read state is markedly higher than in the Laughlin states investigated so
far. Despite the torus geometry being somewhat more involved than in the sphere
geometry, our analysis and insights may prove useful when adopting entanglement
probes to other systems that are more easily studied with periodic boundary
conditions, such as fractional Chern insulators and lattice problems in
general.Comment: 13 pages, 8 figures, published version on PR
Fractional Chern Insulators in Topological Flat bands with Higher Chern Number
Lattice models forming bands with higher Chern number offer an intriguing
possibility for new phases of matter with no analogue in continuum Landau
levels. Here, we establish the existence of a number of new bulk insulating
states at fractional filling in flat bands with Chern number , forming
in a recently proposed pyrochlore model with strong spin-orbit coupling. In
particular, we find compelling evidence for a series of stable states at
for fermions as well as bosonic states at . By
examining the topological ground state degeneracies and the excitation
structure as well as the entanglement spectrum, we conclude that these states
are Abelian. We also explicitly demonstrate that these states are nevertheless
qualitatively different from conventional quantum Hall (multilayer) states due
to the novel properties of the underlying band structure.Comment: 5+4 pages. Final version. Main text as published, some extra data in
the supplementary materia
The [Ne III] Jet of DG Tau and its Ionization Scenarios
Forbidden neon emission from jets of low-mass young stars can be used to
probe the underlying high-energy processes in these systems. We analyze spectra
of the jet of DG Tau obtained with the Very Large Telescope/X-Shooter
spectrograph in 2010. [Ne III] 3869 is clearly detected in the
innermost 3" microjet and the outer knot located at 6".5. The velocity
structure of the inner microjet can be decomposed into the low-velocity
component (LVC) at km/s and the high-velocity component (HVC) at
km/s. Based on the observed [Ne III] flux and its spatial extent,
we suggest the origins of the [Ne III] emission regions and their relation with
known X-ray sources along the jet. The flares from the hard X-ray source close
to the star may be the main ionization source of the innermost microjet. The
fainter soft X-ray source at 0".2 from the star may provide sufficient heating
to help to sustain the ionization fraction against the recombination in the
flow. The outer knot may be reionized by shocks faster than 100 km/s such that
[Ne III] emission reappears and that the soft X-ray emission at 5".5 is
produced. Velocity decomposition of the archival Hubble Space Telescope spectra
obtained in 1999 shows that the HVC had been faster, with a velocity centroid
of km/s. Such a decrease in velocity may potentially be explained
by the expansion of the stellar magnetosphere, changing the truncation radius
and thus the launching speed of the jet. The energy released by magnetic
reconnections during relaxation of the transition can heat the gas up to
several tens of megakelvin and provide the explanation for on-source keV X-ray
flares that ionize the neon microjet
Velocity-Resolved [Ne III] from X-Ray Irradiated Sz 102 Microjets
Neon emission lines are good indicators of high-excitation regions close to a
young stellar system because of their high ionization potentials and large
critical densities. We have discovered [Ne III]{\lambda}3869 emission from the
microjets of Sz 102, a low-mass young star in Lupus III. Spectroastrometric
analyses of two-dimensional [Ne III] spectra obtained from archival
high-dispersion () Very Large Telescope/UVES data suggest that
the emission consists of two velocity components spatially separated by ~ 0."3,
or a projected distance of ~ 60 AU. The stronger redshifted component is
centered at ~ +21 km/s with a line width of ~ 140 km/s, and the weaker
blueshifted component at ~ -90 km/s with a line width of ~ 190 km/s. The two
components trace velocity centroids of the known microjets and show large line
widths that extend across the systemic velocity, suggesting their potential
origins in wide-angle winds that may eventually collimate into jets. Optical
line ratios indicate that the microjets are hot ( K)
and ionized ( cm). The blueshifted component
has ~ 13% higher temperature and ~ 46% higher electron density than the
redshifted counterpart, forming a system of asymmetric pair of jets. The
detection of the [Ne III]{\lambda}3869 line with the distinct velocity profile
suggests that the emission originates in flows that may have been strongly
ionized by deeply embedded hard X-ray sources, most likely generated by
magnetic processes. The discovery of [Ne III]{\lambda}3869 emission along with
other optical forbidden lines from Sz 102 support the picture of wide-angle
winds surrounding magnetic loops in the close vicinity of the young star.
Future high sensitivity X-ray imaging and high angular-resolution optical
spectroscopy may help confirm the picture proposed.Comment: 33 pages, 9 figures, 2 tables; accepted for publication in the ApJ
(minor typo and reference list fixed
The Ultraviolet flash accompanying GRBs from neutron-rich internal shocks
In the neutron-rich internal shocks model for Gamma-ray Burts (GRBs), the
Lorentz factors (LFs) of ions shells are variable, so are the LFs of
accompanying neutron shells. For slow neutron shells with a typical LF tens,
the typical beta-decay radius reads R_{\beta,s} several 10^{14} cm, which is
much larger than the typical internal shocks radius 10^{13} cm, so their impact
on the internal shocks may be unimportant. However, as GRBs last long enough
(T_{90}>20(1+z) s), one earlier but slower ejected neutron shell will be swept
successively by later ejected ion shells in the range 10^{13}-10^{15} cm, where
slow neutrons have decayed significantly. We show in this work that ion shells
interacting with the beta-decay products of slow neutron shells can power a
ultraviolet (UV) flash bright to 12th magnitude during the prompt gamma-ray
emission phase or slightly delayed, which can be detected by the upcoming
Satellite SWIFT in the near future.Comment: 6 pages (2 eps figures), accepted for publication in ApJ
- …