285 research outputs found

    Analysis of Energy Consumption Performance towards Optimal Radioplanning of Wireless Sensor Networks in Heterogeneous Indoor Environments

    Get PDF
    In this paper the impact of complex indoor environment in the deployment and energy consumption of a wireless sensor network infrastructure is analyzed. The variable nature of the radio channel is analyzed by means of deterministic in-house 3D ray launching simulation of an indoor scenario, in which wireless sensors, based on an in-house CyFi implementation, typically used for environmental monitoring, are located. Received signal power and current consumption measurement results of the in-house designed wireless motes have been obtained, stating that adequate consideration of the network topology and morphology lead to optimal performance and power consumption reduction. The use of radioplanning techniques therefore aid in the deployment of more energy efficient elements, optimizing the overall performance of the variety of deployed wireless systems within the indoor scenario

    Response to tilted magnetic fields in Bi2Sr2CaCu2O8 with columnar defects: Evidence for transverse Meissner effect

    Full text link
    The transverse Meissner effect (TME) in the highly layered superconductor Bi2Sr2CaCu2O(8+y) with columnar defects is investigated by transport measurements. We present detailed evidence for the persistence of the Bose-glass phase when H is tilted at an angle theta < theta_c (T) away from the column direction: (i) the variable-range vortex hopping process for low currents crosses over to the half-loops regime for high currents; (ii) in both regimes near theta_c(T) the energy barriers vanish linearly with tan(theta) ; (iii) the transition temperature is governed by T_{BG}(0) -T_{BG}(theta) sim |tan(theta)|^{1/\nu_{\perp}} with \nu_{\perp}=1.0 +/- 0.1. Furthermore, above the transition as theta->\theta_c+, moving kink chains consistent with a commensurate-incommensurate transition scenario are observed. These results thereby clearly show the existence of the TME for theta < theta_c(T).Comment: 4 pages, RevTeX, 5 EPS figure

    Effect of field tilting on the vortices in irradiated Bi-2212

    Full text link
    We report on transport measurements in a Bi-2212 single crystal with columnar defects parallel to the c-axis. The tilt of the magnetic field away from the direction of the tracks is studied for filling factors f=B_z/B_phi<1. Near the Bose Glass transition temperature T_BG, the angular scaling laws are verified and we find the field independent critical exponents nu'=1.1 and z'=5.30. Finally, above H_perpC we evidence the signature of a smectic-A like vortex phase. These experimental results provide support for the Bose Glass theory.Comment: 2 pages LaTeX, 2 EPS figures, uses fleqn and espcrc2 style macros. Submitted to Proceedings of M2S-HTSC-V

    An Exploration of the Ozone Dimer Potential Energy Surface

    Get PDF
    The (O3)2 dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O3 monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm−1. In addition to the five minima, 11 higher-order stationary points are identified

    Network-assisted protein identification and data interpretation in shotgun proteomics

    Get PDF
    Protein assembly and biological interpretation of the assembled protein lists are critical steps in shotgun proteomics data analysis. Although most biological functions arise from interactions among proteins, current protein assembly pipelines treat proteins as independent entities. Usually, only individual proteins with strong experimental evidence, that is, confident proteins, are reported, whereas many possible proteins of biological interest are eliminated. We have developed a clique-enrichment approach (CEA) to rescue eliminated proteins by incorporating the relationship among proteins as embedded in a protein interaction network. In several data sets tested, CEA increased protein identification by 8–23% with an estimated accuracy of 85%. Rescued proteins were supported by existing literature or transcriptome profiling studies at similar levels as confident proteins and at a significantly higher level than abandoned ones. Applying CEA on a breast cancer data set, rescued proteins coded by well-known breast cancer genes. In addition, CEA generated a network view of the proteins and helped show the modular organization of proteins that may underpin the molecular mechanisms of the disease

    Vortex dynamics in layered superconductors with correlated defects: influence of interlayer coupling

    Full text link
    We report a detailed study of the vortex dynamics and vortex phase diagrams of two amorphous Ta_0.3Ge_0.7/Ge multilayered films with intrinsic coplanar defects, but different interlayer coupling. A pinned Bose-glass phase in the more weakly coupled sample exists only below a cross-over field H* in striking contrast to the strongly coupled film. Above H* the flux lines are thought to break up into pancake vortices and the cross-over field is significantly increased when the field is aligned along the extended defects. The two films show different vortex creep excitations in the Bose-glass phase.Comment: zip file: 1 RevTex, 5 figures (png

    Impact assessment for the improved four boundary conditions (at bed, free-surface, land-boundary and offshore-boundary) on coastal hydrodynamics and particulate transport

    Get PDF
    The FIELD_AC project aims at providing an improved operational service for coastal areas and at generating added value for shelf and regional scale predictions. Coastal-zone oceanographic predictions seldom appraise the land discharge as a boundary condition. River fluxes are sometimes considered, but neglecting their 3D character, while the "distributed" continental run-off is not taken into consideration. Moreover, many coastal scale processes, particularly those relevant in geographically restricted domains (coast with harbors or river mouth areas), are not well parametrized in present simulations.Work package 3 dedicated to Boundary Fluxes aims to establish and use the best possible boundary conditions for coastal water quality modelling. On this scale, all boundaries become important. For the land boundary side the needed products are distributed and point wise run-off both quantitatively and qualitatively. For the offshore boundary condition, 3D current, water quality field, and wave spectra will be used. For the atmospheric boundary, products from local scale meteorological models (wind, atmospheric pressure and rainfall) are needed. For the seabed, boundary information on sediment composition, bedforms and bathymetry and bio-geo-chemical parameters is essential.This report addresses the impact assessment for improvements in the four boundary conditions (boundary fluxes from land, free-surface boundary condition, seabed boundary condition and open boundary fluxes) on coastal hydrodynamics and particulate transport. The description of the improved four boundary conditions is followed by examples of concrete impact assessment of the theory into the Catalan coast, Liverpool Bay, German Bight and Gulf of Venice

    Advances in the application and utility of subseasonal-to-seasonal predictions

    Get PDF
    The joint WWRP–WCRP Subseasonal to Seasonal Prediction Project (e.g., Robertson et al. 2014) created a global repository of experimental or operational near-real-time S2S forecasts and reforecasts (hindcasts) from 11 international meteorological institutions, cohosted by ECMWF and CMA (Vitart et al. 2017). These data are publicly accessible by researchers and users (https://apps.ecmwf.int/datasets/data/s2s and http://s2s.cma.cn/index). With the exception of the fourth case study, which uses GloSea5 forecasts (MacLachlan et al. 2015), all case studies use selected S2S forecasts and reforecasts that are available from this repository, providing a consistent basis for S2S forecast skill assessment and evaluation of their utility.The subseasonal-to-seasonal (S2S) predictive time scale, encompassing lead times ranging from 2 weeks to a season, is at the frontier of forecasting science. Forecasts on this time scale provide opportunities for enhanced application-focused capabilities to complement existing weather and climate services and products. There is, however, a “knowledge–value” gap, where a lack of evidence and awareness of the potential socioeconomic benefits of S2S forecasts limits their wider uptake. To address this gap, here we present the first global community effort at summarizing relevant applications of S2S forecasts to guide further decision-making and support the continued development of S2S forecasts and related services. Focusing on 12 sectoral case studies spanning public health, agriculture, water resource management, renewable energy and utilities, and emergency management and response, we draw on recent advancements to explore their application and utility. These case studies mark a significant step forward in moving from potential to actual S2S forecasting applications. We show that by placing user needs at the forefront of S2S forecast development—demonstrating both skill and utility across sectors—this dialogue can be used to help promote and accelerate the awareness, value, and cogeneration of S2S forecasts. We also highlight that while S2S forecasts are increasingly gaining interest among users, incorporating probabilistic S2S forecasts into existing decision-making operations is not trivial. Nevertheless, S2S forecasting represents a significant opportunity to generate useful, usable, and actionable forecast applications for and with users that will increasingly unlock the potential of this forecasting time scale.DD gratefully acknowledges support from the Swiss National Science Foundation through project PP00P2_170523. For case study 1, ACP and WTKH were funded by the U.K. Climate Resilience Programme, supported by the UKRI Strategic Priorities Fund. RWL was funded by NERC Grant NE/P00678/1 and by the BER DOE Office of Science Federal Award DE-SC0020324. TS was funded by NERC Independent Research Fellowship (NE/P018637/1). CMG and DB were funded by the Helmholtz Young Investigator Group “SPREADOUT” Grant VH-NG-1243. Case study 2 was supported by the U.K. Global Challenges Research Fund NE/P021077/1 (GCRF African SWIFT) and the Tertiary Education Trust Fund (TETFUND) of Nigeria TETFund/DR&D/CE/NRF/STI/73/VOL.1. EO thanks Adrian Tomkins of ICTP, Italy, for his contribution. Case study 3 was undertaken as part of the Columbia World Project, ACToday, Columbia University (https://iri.columbia.edu/actoday/). Case study 4 was supported by the ForPAc (Towards Forecast-based Preparedness Action) project within the NERC/FCDO SHEAR Programme NE/P000428/1, NE/P000673/1, and NE/P000568/1. Case study 5 was undertaken as part of the International Research Applications Project, funded by the U.S. National Oceanic and Atmospheric Administration. EO thanks IRAP project colleagues at The University of Arizona, Indian Meteorological Department, Regional Integrated Multi-Hazard Early Warning System for Africa and Asia, and two of Bihar’s State Agricultural Universities for their contributions. For case study 6, CASC thanks Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico Process 305206/2019-2 and Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo Process 2015/50687-8 (CLIMAX Project) for their support. For case study 7, DW’s contributions were carried out under contract with the National Aeronautics and Space Administration. Case study 8 was funded by the EU Horizon 2020 Research and Innovation Programme Grant 7767874 (S2S4E). We also acknowledge the Subseasonal-to-Seasonal Project’s Real-Time Pilot Initiative for providing access to real-time forecasts. For case study 9, TIC-LCPE Hydro-04 was funded by the University of Strathclyde’s Low Carbon Power and Energy program. JB was supported by EPSRC Innovation Fellowship EP/R023484/1. We thank Andrew Low and Richard Hearnden from SSE Renewables for their input. Case study 10 was supported by the Earth Systems and Climate Change Hub under the Australian Government’s National Environmental Science Program, and the Decadal Climate Forecasting Project (CSIRO). Case study 11 was funded by the Technologies for Sustainable Built Environments Centre, Reading University, in conjunction with the EPSRC Grant EP/G037787/1 and BT PLC. Case study 12 was funded through the framework service contract for operating the EFAS Computational Center Contract 198702 and the Copernicus Fire Danger Computations Contract 389730 295 in support of the Copernicus Emergency Management Service and Early Warning Systems between the Joint Research Centre and ECMWF.Peer Reviewed"Article signat per 60 autors/es: Christopher J. White, Daniela I. V. Domeisen, Nachiketa Acharya, Elijah A. Adefisan, Michael L. Anderson, Stella Aura, Ahmed A. Balogun, Douglas Bertram, Sonia Bluhm, David J. Brayshaw, Jethro Browell, Dominik BĂŒeler, Andrew Charlton-Perez, Xandre Chourio, Isadora Christel, Caio A. S. Coelho, Michael J. DeFlorio, Luca Delle Monache, Francesca Di Giuseppe, Ana MarĂ­a GarcĂ­a-SolĂłrzano, Peter B. Gibson, Lisa Goddard, Carmen GonzĂĄlez Romero, Richard J. Graham, Robert M. Graham, Christian M. Grams, Alan Halford, W. T. Katty Huang, Kjeld Jensen, Mary Kilavi, Kamoru A. Lawal, Robert W. Lee, David MacLeod, Andrea Manrique-Suñén, Eduardo S. P. R. Martins, Carolyn J. Maxwell, William J. Merryfield, Ángel G. Muñoz, Eniola Olaniyan, George Otieno, John A. Oyedepo, LluĂ­s Palma, Ilias G. Pechlivanidis, Diego Pons, F. Martin Ralph, Dirceu S. Reis Jr., Tomas A. Remenyi, James S. Risbey, Donald J. C. Robertson, Andrew W. Robertson, Stefan Smith, Albert Soret, Ting Sun, Martin C. Todd, Carly R. Tozer, Francisco C. Vasconcelos Jr., Ilaria Vigo, Duane E. Waliser, Fredrik Wetterhall, and Robert G. Wilson"Postprint (author's final draft

    Vortex dynamics and states of artificially layered superconducting films with correlated defects

    Full text link
    Linear resistances and IVIV-characteristics have been measured over a wide range in the parameter space of the mixed phase of multilayered a-TaGe/Ge films. Three films with varying interlayer coupling and correlated defects oriented at an angle ≈25\approx 25 from the film normal were investigated. Experimental data were analyzed within vortex glass models and a second order phase transition from a resistive vortex liquid to a pinned glass phase. Various vortex phases including changes from three to two dimensional behavior depending on anisotropy have been identified. Careful analysis of IVIV-characteristics in the glass phases revealed a distinctive TT and HH-dependence of the glass exponent ÎŒ\mu. The vortex dynamics in the Bose-glass phase does not follow the predicted behavior for excitations of vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table
    • 

    corecore