939 research outputs found

    Disk Evolution in Young Binaries: from Observations to Theory

    Full text link
    The formation of a binary system surrounded by disks is the most common outcome of stellar formation. Hence studying and understanding the formation and the evolution of binary systems and associated disks is a cornerstone of star formation science. Moreover, since the components within binary systems are coeval and the sizes of their disks are fixed by the tidal truncation of their companion, binary systems provide an ideal "laboratory" in which to study disk evolution under well defined boundary conditions. In this paper, we review observations of several inner disk diagnostics in multiple systems, including hydrogen emission lines (indicative of ongoing accretion), K−LK-L and K−NK-N color excesses (evidence of warm inner disks), and polarization (indicative of the relative orientations of the disks around each component). We examine to what degree these properties are correlated within binary systems and how this degree of correlation depends on parameters such as separation and binary mass ratio. These findings will be interpreted both in terms of models that treat each disk as an isolated reservoir and those in which the disks are subject to re-supply from some form of circumbinary reservoir, the observational evidence for which we will also critically review. The planet forming potential of multiple star systems is discussed in terms of the relative lifetimes of disks around single stars, binary primaries and binary secondaries. Finally, we summarize several potentially revealing observational problems and future projects that could provide further insight into disk evolution in the coming decadeComment: 16 pages, 7 figures, chapter in Protostars and Planets

    A near-infrared variability campaign of TMR-1: New light on the nature of the candidate protoplanet TMR-1C

    Full text link
    (abridged) We present a near-infrared (NIR) photometric variability study of the candidate protoplanet, TMR-1C, located at a separation of about 10" (~1000 AU) from the Class I protobinary TMR-1AB in the Taurus molecular cloud. Our campaign was conducted between October, 2011, and January, 2012. We were able to obtain 44 epochs of observations in each of the H and Ks filters. Based on the final accuracy of our observations, we do not find any strong evidence of short-term NIR variability at amplitudes of >0.15-0.2 mag for TMR-1C or TMR-1AB. Our present observations, however, have reconfirmed the large-amplitude long-term variations in the NIR emission for TMR-1C, which were earlier observed between 1998 and 2002, and have also shown that no particular correlation exists between the brightness and the color changes. TMR-1C became brighter in the H-band by ~1.8 mag between 1998 and 2002, and then fainter again by ~0.7 mag between 2002 and 2011. In contrast, it has persistently become brighter in the Ks-band in the period between 1998 and 2011. The (H-Ks) color for TMR-1C shows large variations, from a red value of 1.3+/-0.07 and 1.6+/-0.05 mag in 1998 and 2000, to a much bluer color of -0.1+/-0.5 mag in 2002, and then again a red color of 1.1+/-0.08 mag in 2011. The observed variability from 1998 to 2011 suggests that TMR-1C becomes fainter when it gets redder, as expected from variable extinction, while the brightening observed in the Ks-band could be due to physical variations in its inner disk structure. The NIR colors for TMR-1C obtained using the high precision photometry from 1998, 2000, and 2011 observations are similar to the protostars in Taurus, suggesting that it could be a faint dusty Class I source. Our study has also revealed two new variable sources in the vicinity of TMR-1AB, which show long-term variations of ~1-2 mag in the NIR colors between 2002 and 2011.Comment: Accepted in A&

    The Taurus Boundary of Stellar/Substellar (TBOSS) Survey I: far-IR disk emission measured with Herschel

    Full text link
    With Herschel/PACS 134 low mass members of the Taurus star-forming region spanning the M4-L0 spectral type range and covering the transition from low mass stars to brown dwarfs were observed. Combining the new Herschel results with other programs, a total of 150 of the 154 M4-L0 Taurus members members have observations with Herschel. Among the 150 targets, 70um flux densities were measured for 7 of the 7 ClassI objects, 48 of the 67 ClassII members, and 3 of the 76 ClassIII targets. For the detected ClassII objects, the median 70um flux density level declines with spectral type, however, the distribution of excess relative to central object flux density does not change across the stellar/substellar boundary in the M4-L0 range. Connecting the 70um TBOSS values with the results from K0-M3 ClassII members results in the first comprehensive census of far-IR emission across the full mass spectrum of the stellar and substellar population of a star-forming region, and the median flux density declines with spectral type in a trend analogous to the flux density decline expected for the central objects. SEDs were constructed for all TBOSS targets covering the optical to far-IR range and extending to the submm/mm for a subset of sources. Based on an initial exploration of the impact of different physical parameters; inclination, scale height and flaring have the largest influence on the PACS flux densities. From the 24um to 70um spectral index of the SEDs, 5 new candidate transition disks were identified. The steep 24um to 70um slope for a subset of 8 TBOSS targets may be an indication of truncated disks in these systems.Two examples of mixed pair systems that include secondaries with disks were measured. Finally, comparing the TBOSS results with a Herschel study of Ophiuchus brown dwarfs reveals a lower fraction of disks around the Taurus substellar population.Comment: 64 pages, 33 figures, 12 tables, accepted for publication in A&

    Infrared Speckle Interferometry with 2-D Arrays

    Get PDF
    We describe results from a program of speckle interferometry with two-dimensional infrared array detectors. Analysis of observations of eta Carinae made with 58 x 62 InSb detector are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe detector will lead to a significant improvement i limiting magnitude for IR speckle interferometry

    Disc orientations in pre-main-sequence multiple systems. A study in southern star formation regions

    Get PDF
    Classical T Tauri stars are encircled by accretion discs most of the time unresolved by conventional imaging observation. However, numerical simulations show that unresolved aperture linear polarimetry can be used to extract information about the geometry of the immediate circumstellar medium that scatter the starlight. Monin, Menard & Duchene (1998) previously suggested that polarimetry can be used to trace the relative orientation of discs in young binary systems in order to shed light on the stellar and planet formation process. In this paper, we report on new VLT/FORS1 optical linear polarisation measurements of 23 southern binaries spanning a range of separation from 0.8'' to 10''. In each field, the polarisation of the central binary is extracted, as well as the polarisation of nearby stars in order to estimate the local interstellar polarisation. We find that, in general, the linear polarisation vectors of individual components in binary systems tend to be parallel to each other. The amplitude of their polarisations are also correlated. These findings are in agreement with our previous work and extend the trend to smaller separations. They are also similar to other studies, e.g., Donar et al. 1999; Jensen et al. 2000, 2004; Wolf et al. 2001. However, we also find a few systems showing large differences in polarisation level, possibly indicating different inclinations to the line-of-sight for their discs.Comment: 13 pages, 11 figures, accepted in Astronomy and Astrophysics. accepted in Astronomy and Astrophysics (A&A

    Weak magnetic fields in white dwarfs and their direct progenitors?

    Full text link
    We have carried out a re-analysis of polarimetric data of central stars of planetary nebulae, hot subdwarfs, and white dwarfs taken with FORS1 (FOcal Reducer and low dispersion Spectrograph) on the VLT (Very Large Telescope), and added a large number of new observations in order to increase the sample. A careful analysis of the observations using only one wavelength calibration for the polarimetrically analysed spectra and for all positions of the retarder plate of the spectrograph is crucial in order to avoid spurious signals. We find that the previous detections of magnetic fields in subdwarfs and central stars could not be confirmed while about 10% of the observed white dwarfs have magnetic fields at the kilogauss level.Comment: 6 pages, Proceedings of the 18th European White Dwarf Workshop, ASP Conference Serie

    The T Tauri Phase Down to Nearly Planetary Masses: Echelle Spectra of 82 Very Low Mass Stars and Brown Dwarfs

    Full text link
    Using the largest high-resolution spectroscopic sample to date of young, very low mass stars (VLMS) and brown dwarfs (BDs), we investigate disk accretion in objects ranging from just above the hydrogen-burning limit all the way to nearly planetary masses. Our 82 targets span spectral types from M5 to M9.5, or masses from 0.15 Msun down to ~15 Jupiters. They are confirmed members of the rho Oph, Taurus, Cha I, IC 348, R CrA, Upper Sco and TW Hydrae regions, with ages = M6.5). We find that: (1) classical T Tauri-like disk-accretion persists in the BD domain down to nearly the deuterium-burning limit; (2) in addition to H-alpha, permitted emission lines of CaII, OI and HeI are also good accretion indicators, as in CTTs; (3) the CaII 8662A flux is an excellent quantitative measure of the accretion rate (Mdot) in VLMS and BDs(as in CTTs); (4) Mdot diminishes as M^2 -- our measurements support previous findings of this correlation, and extend it to the entire range of sub-stellar masses; (5) the accretor fraction among VLMS and BDs decreases substantially with age, as in higher-mass stars; (6) at any given age, the VLMS and BD accretor fraction is comparable to that in higher-mass stars; and (7) a number of sources with IR disk excesses do not evince measurable accretion, with the incidence of such a mismatch increasing with age: this implies that disks in the low mass regime can persist beyond the main accretion phase, and parallels the transition from the classical to post-T Tauri stage in more massive stars. These strong similarities at young ages, between higher-mass stars and low-mass bodies close to and below the hydrogen-burning limit, are consistent with a common formation mechanism in the two mass regimes. (abridged)Comment: 64 pages, 7 figures. ApJ accepte
    • 

    corecore