30,272 research outputs found

    Free-Knot Spline Approximation of Stochastic Processes

    Get PDF
    We study optimal approximation of stochastic processes by polynomial splines with free knots. The number of free knots is either a priori fixed or may depend on the particular trajectory. For the ss-fold integrated Wiener process as well as for scalar diffusion processes we determine the asymptotic behavior of the average LpL_p-distance to the splines spaces, as the (expected) number kk of free knots tends to infinity.Comment: 23 page

    Monte Carlo Simulation of Long Chain Polymer Melts: Crossover from Rouse to Reptation Dynamics

    Full text link
    We present data of Monte Carlo simulations for monodisperse linear polymer chains in dense melts with degrees of polymerization between N=16 and N=512. The aim of this study is to investigate the crossover from Rouse-like dynamics for short chains to reptation-like dynamics for long chains. To address this problem we calculate a variety of different quantities: standard mean-square displacements of inner monomers and of the chain's center of mass, the recently proposed cubic invariant, persistence of bond-vector orientation with time, and the auto-correlation functions of the bond vector, the end-to-end vector and the Rouse modes. This analysis reveals that the crossover from non- to entangled dynamics is very protracted. Only the largest chain length N=512, which is about 13 times larger than the entanglement length, shows evidence for reptation.Comment: 38 pages of REVTeX, 14 PostScript figure

    Two-body recombination in a quantum mechanical lattice gas: Entropy generation and probing of short-range magnetic correlations

    Full text link
    We study entropy generation in a one-dimensional (1D) model of bosons in an optical lattice experiencing two-particle losses. Such heating is a major impediment to observing exotic low temperature states, and "simulating" condensed matter systems. Developing intuition through numerical simulations, we present a simple empirical model for the entropy produced in this 1D setting. We also explore the time evolution of one and two particle correlation functions, showing that they are robust against two-particle loss. Because of this robustness, induced two-body losses can be used as a probe of short range magnetic correlations.Comment: 6 pages, 3 figures - v4, published versio

    Notes from the 3rd Axion Strategy Meeting

    Full text link
    In this note we briefly summarize the main future targets and strategies for axion and general low energy particle physics identified in the "3rd axion strategy meeting" held during the AXIONS 2010 workshop. This summary follows a wide discussion with contributions from many of the workshop attendees.Comment: 5 pages, 1 figur

    Stirring trapped atoms into fractional quantum Hall puddles

    Full text link
    We theoretically explore the generation of few-body analogs of fractional quantum Hall states. We consider an array of identical few-atom clusters (n=2,3,4), each cluster trapped at the node of an optical lattice. By temporally varying the amplitude and phase of the trapping lasers, one can introduce a rotating deformation at each site. We analyze protocols for coherently transferring ground state clusters into highly correlated states, producing theoretical fidelities in excess of 99%.Comment: 4 pages, 3 figures (13 subfigures) -- v2: published versio

    On the stability of inertial systems

    Get PDF
    On stability of inertial system
    • …
    corecore