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Abstract

We study optimal approximation of stochastic processes by polynomial splines with free knots. The
number of free knots is either a priori fixed or may depend on the particular trajectory. For the s-fold
integrated Wiener process as well as for scalar diffusion processes we determine the asymptotic behavior of
the average Lp-distance to the splines spaces, as the (expected) number of free knots tends to infinity.
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1. Introduction

Consider a stochastic process X = (X(t))t �0 with continuous paths on a probability space
(�,A, P ). We study optimal approximation of X on the unit interval by polynomial splines with
free knots, which has first been treated in [11].

For k ∈ N and r ∈ N0 we let �r denote the set of polynomials of degree at most r, and we
consider the space �k,r of polynomial splines

� =
k∑

j=1

1]tj−1,tj ] · �j ,

where 0 = t0 < · · · < tk = 1 and �1, . . . , �k ∈ �r . Furthermore, we letNk,r denote the class of
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mappings

X̂ : � → �k,r ,

and for 1�p�∞ and 1�q < ∞ we define

ek,r (X, Lp, q) = inf
{(

E∗‖X − X̂‖q

Lp[0,1]
)1/q : X̂ ∈ Nk,r

}
.

Here we use the outer expectation value E∗ in order to avoid cumbersome measurability consid-
erations. The reader is referred to [21] for a detailed study of the outer integral and expectation.
Note that ek,r (X, Lp, q) is the q-average Lp-distance of the process X to the spline space �k,r .

A natural extension of this methodology is not to work with an a priori chosen number of
free knots, but only to control the average number of knots needed. This leads to the definition
�r = ⋃∞

k=1 �k,r and to the study of the class Nr of mappings

X̂ : � → �r .

For a spline approximation method X̂ ∈ Nr we define

�(X̂) = E∗(min{k ∈ N : X̂(·) ∈ �k,r}),
i.e., �(X̂) − 1 is the expected number of free knots used by X̂. Subject to the bound �(X̂)�k, the
minimal achievable error for approximation of X in the class Nr is given by

eav
k,r (X, Lp, q) = inf

{(
E∗‖X − X̂‖q

Lp[0,1]
)1/q : X̂ ∈ Nr , �(X̂)�k

}
.

We shall study the asymptotics of the quantities ek,r and eav
k,r as k tends to infinity.

The spline spaces �k,r form nonlinear manifolds that consist of k-term linear combinations of
functions of the form 1]t,1] ·� with 0� t < 1 and � ∈ �r . We refer to [7, Section 6] for a detailed
treatment in the context of nonlinear approximation.

Hence we are addressing a so-called nonlinear approximation problem. While nonlinear ap-
proximation is extensively studied for deterministic functions, see [7] for a survey, much less is
known for stochastic processes, i.e., for random functions. Here we refer to [2,3], where wavelet
methods are analyzed, and to [11]. In the latter paper nonlinear approximation is related to ap-
proximation based on partial information, as studied in information-based complexity, and spline
approximation with free knots is analyzed as a particular instance.

2. Main results

For two sequences (ak)k∈N and (bk)k∈N of positive real numbers we write ak ≈ bk if limk→∞
ak/bk = 1, and ak�bk if lim infk→∞ ak/bk �1. Additionally, ak � bk means c1 �ak/bk �c2 for
all k ∈ N and some positive constants ci .

Fix s ∈ N0 and let W(s) denote an s-fold integrated Wiener process. In [11], the following
result was proved.

Theorem 1. For r ∈ N0 with r �s,

ek,r (W
(s), L∞, 1) � eav

k,r (W
(s), L∞, 1) � k−(s+1/2).
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Our first result refines and extends this theorem. Consider the stopping time

�r,s,p = inf
{
t > 0 : inf

�∈�r

‖W(s) − �‖Lp[0,t] > 1
}
,

which yields the length of the maximal subinterval [0, �r,s,p] that permits best approximation of
W(s) from �r with error at most one. We have 0 < E �r,s,p < ∞, see (14), and we put

� = s + 1
2 + 1/p

as well as

cr,s,p = (E �r,s,p)−�

and

bs,p = (s + 1
2 )s+1/2 · p−1/p · �−�,

where, for p = ∞, we use the convention ∞0 = 1.

Theorem 2. Let r ∈ N0 with r �s and 1�q < ∞. Then, for p = ∞,

eav
k,r (W

(s), L∞, q) ≈ ek,r (W
(s), L∞, q) ≈ cr,s,∞ · k−(s+1/2). (1)

Furthermore, for 1�p < ∞,

bs,p · cr,s,p · k−(s+1/2)�ek,r (W
(s), Lp, q)�cr,s,p · k−(s+1/2) (2)

and

eav
k,r (W

(s), Lp, q) � k−(s+1/2). (3)

Note that the bounds provided by (1) and (2) do not depend on the averaging parameter q.
Furthermore,

lim
p→∞ bs,p = 1

for every s ∈ N, but

lim
s→∞ bs,p = 0

for every 1�p < ∞. We conjecture that the upper bound in (2) is sharp.
We have an explicit construction of methods X̂

(p)
k ∈ Nk,r that achieve the upper bounds in (1)

and (2), i.e.,(
E∗‖W(s) − X̂

(p)
k ‖q

Lp[0,1]
)1/q ≈ cr,s,p · k−(s+1/2), (4)

see (10) and (21). Moreover, these methods a.s. satisfy

‖W(s) − X̂
(p)
k ‖Lp[0,1] ≈ cr,s,p · k−(s+1/2) (5)

as well, while

‖W(s) − X̂k‖Lp[0,1]�bs,p · cr,s,p · k−(s+1/2) (6)
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holds a.s. for every sequence of approximations X̂k ∈ Nk,r . Note that the right-hand sides in (5)
and (6) do not depend on the specific path of W(s), i.e., on � ∈ �.

Our second result deals with approximation of a scalar diffusion process given by the stochastic
differential equation

dX(t) = a(X(t)) dt + b(X(t)) dW(t), t �0,

X(0) = x0. (7)

Here x0 ∈ R, and W denotes a one-dimensional Wiener process. Moreover, we assume that the
functions a, b : R → R satisfy

(A1) a is Lipschitz continuous.
(A2) b is differentiable with a bounded derivative.
(A3) b(x0) 	= 0.

Theorem 3. Let r ∈ N0, 1�q < ∞, and 1�p�∞. Then

ek,r (X, Lp, q) � eav
k,r (X, Lp, q) � k−1/2

holds for the strong solution X of Eq. (7).

For a diffusion process X piecewise linear interpolation with free knots is frequently used in
connection with adaptive step-size control. Theorem 3 provides a lower bound for the Lp-error
of any such numerical algorithm, no matter whether just Wiener increments or, e.g., arbitrary
multiple Itô-integrals are used. Under slightly stronger conditions on the diffusion coefficient b,
error estimates in [9,17] lead to refined upper bounds in Theorem 3 for the case 1�p < ∞, as
follows. Put

�(p1, p2) = (
E ‖b ◦ X‖p2

Lp1 [0,1]
)1/p2

for 1�p1, p2 < ∞. Furthermore, let B denote a Brownian bridge on [0, 1] and define

	(p) = (
E ‖B‖p

Lp[0,1]
)1/p

.

Then

ek,1(X, Lp, p)�	(p) · �(2p/(p + 2), p) · k−1/2

and

eav
k,1(X, Lp, p)�	(p) · �(2p/(p + 2), 2p/(p + 2)) · k−1/2.

We add that these upper bounds are achieved by piecewise linear interpolation of modified Milstein
schemes with adaptive step-size control for the Wiener increments.

In the case p = ∞ it is interesting to compare the results on free-knot spline approximation
with average k-widths of X. The latter quantities are defined by

dk(X, Lp, q) = inf
�

(
E

(
inf
�∈�

‖X − �‖q

Lp[0,1]
))1/q

,

where the infimum is taken over all linear subspaces � ⊆ Lp[0, 1] of dimension at most k. For
X = W(s) as well as in the diffusion case we have

dk(X, L∞, q) � k−(s+1/2),
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see [4,14–16,6]. Almost optimal linear subspaces are not known explicitly, since the proof of the
upper bound for dk(X, L∞, q) is non-constructive. We add that in the case of an s-fold integrated
Wiener process piecewise polynomial interpolation of W(s) at equidistant knots i/k only yields
errors of order (ln k)1/2 · k−(s+1/2), see [20] for results and references. Similarly, in the diffusion
case, methods X̂k ∈ Nr that are only based on pointwise evaluation of W and satisfy �(X̂k)�k

can at most achieve errors of order (ln k)1/2 · k−1/2, see [18].
The rest of the paper is organized as follows. In the next section, some auxiliary results about

approximation of a fixed function by piecewise polynomial splines are established. In Section
4, this is used to prove Theorem 2, as well as Eqs. (4)–(6). Section 5 is devoted to the proof of
Theorem 3. In the Appendix, we prove an auxiliary result about convergence of negative moments
of means and a small deviation result, which controls the probability that a path of W(s) stays
close to the space �r .

3. Approximation of deterministic functions

Let r ∈ N0 and 1�p�∞ be fixed. We introduce error measures, which allow to determine
suitable free knots for spline approximation. For f ∈ C [0, ∞[ and 0�u < v we put


[u,v](f ) = inf
�∈�r

‖f − �‖Lp[u,v].

Furthermore, for ε > 0, we put �0,ε(f ) = 0, and we define

�j,ε(f ) = inf{t > �j−1,ε(f ) : 
[�j−1,ε(f ),t](f ) > ε}
for j �1. Here inf ∅ = ∞, as usual. Put Ij (f ) = {ε > 0 : �j,ε(f ) < ∞}.

Lemma 4. Let j ∈ N.

(i) If ε ∈ Ij (f ) then


[�j−1,ε(f ),�j,ε(f )](f ) = ε.

(ii) The set Ij (f ) is an interval, and the mapping ε → �j,ε(f ) is strictly increasing and right-
continuous on Ij (f ). Furthermore, �j,ε(f ) > �j−1,ε(f ) if ε ∈ Ij−1(f ), and limε→∞
�j,ε(f ) = ∞.

(iii) If v → 
[u,v](f ) is strictly increasing for every u�0, then ε → �j,ε(f ) is continuous on
Ij (f ).

Proof. First we show that the mapping (u, v) → 
[u,v](f ) is continuous. Put J1 = [u/2, u +
(v −u)/3] as well as J2 = [v − (v −u)/3, 2v]. Moreover, let ��(t) = ∑r

i=0 �i · t i for � ∈ Rr+1,
and define a norm on Rr+1 by

‖�‖ = ‖��‖Lp[u+(v−u)/3,v−(v−u)/3].

If (x, y) ∈ J1 × J2 and

‖f − ��‖Lp[x,y] = 
[x,y](f )

then

‖�‖�‖��‖Lp[x,y] �
[u/2,2v](f ) + ‖f ‖Lp[u/2,2v].
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Hence there exists a compact set K ⊆ Rr+1 such that


[x,y](f ) = inf
�∈K

‖f − ��‖Lp[x,y]

for every (x, y) ∈ J1 × J2. Since (x, y, �) → ‖f − ��‖Lp[x,y] defines a continuous mapping on
J1 × J2 × K , we conclude that (x, y) → inf�∈K ‖f − ��‖Lp[x,y] is continuous, too, on J1 × J2.

Continuity and monotonicity of v → 
[u,v](f ) immediately imply (i).
The monotonicity stated in (ii) will be verified inductively. Let 0 < ε1 < ε2 with ε2 ∈ Ij (f ),

and suppose that �j−1,ε1(f )��j−1,ε2(f ). Note that the latter holds true by definition for j = 1.
From (i) we get


[�j−1,ε1 (f ),�j,ε2 (f )](f )�
[�j−1,ε2 (f ),�j,ε2 (f )](f ) = ε2.

This implies �j,ε1(f )��j,ε2(f ), and (i) excludes equality to hold here.
Since 
[u,v](f )�‖f ‖Lp[u,v], the mappings ε →�j,ε(f ) are unbounded and �j,ε(f )>�j−1,ε(f )

if ε ∈ Ij−1(f ).
For the proof of the continuity properties stated in (ii) and (iii) we also proceed inductively, and

we use (i) and the monotonicity from (ii). Consider a sequence (εn)n∈N in Ij (f ), which converges
monotonically to ε ∈ Ij (f ), and put t = limn→∞ �j,εn(f ). Assume that limn→∞ �j−1,εn(f ) =
�j−1,ε(f ), which obviously holds true for j = 1. Continuity of (u, v) → 
[u,v](f ) and (i)
imply 
[�j−1,ε(f ),t](f ) = ε, so that t ��j,ε(f ). For a decreasing sequence (εn)n∈N we also have
�j,ε(f )� t . For an increasing sequence (εn)n∈N we use the strict monotonicity of v → 
[u,v](f )

to derive t = �j,ε(f ). �

Let F denote the class of functions f ∈ C [0, ∞[ that satisfy

�j,ε(f ) < ∞ (8)

for every j ∈ N and ε > 0 as well as

lim
ε→0

�j,ε(f ) = 0 (9)

for every j ∈ N.
Let k ∈ N. We now present an almost optimal spline approximation method of degree r with

k − 1 free knots for functions f ∈ F . Put

�k(f ) = inf{ε > 0 : �k,ε(f )�1}
and note that (9) together with Lemma 4(ii) implies �k(f ) ∈ ]0, ∞[. Let

�j = �j,�k(f )(f )

for j = 0, . . . , k and define

�(p)
k (f ) =

k∑
j=1

1]�j−1,�j ] · argmin
�∈�r

‖f − �‖Lp[�j−1,�j ]. (10)

Note that Lemma 4 guarantees

‖f − �(p)
k (f )‖Lp[�j−1,�j ] = �k(f ) (11)
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for j = 1, . . . , k and

�k �1. (12)

The spline �(p)
k (f )|[0,1] ∈ �k,r enjoys the following optimality properties.

Proposition 5. Let k ∈ N and f ∈ F .

(i) For 1�p�∞,

‖f − �(p)
k (f )‖Lp[0,1] �k1/p · �k(f ).

(ii) For p = ∞ and every � ∈ �k,r ,

‖f − �‖L∞[0,1] ��k(f ).

(iii) For 1�p < ∞, every � ∈ �k,r , and every m ∈ N with m > k,

‖f − �‖Lp[0,1] �(m − k + 1)1/p · �m(f ).

Proof. For p < ∞,

‖f − �(p)
k (f )‖p

Lp[0,1] �
k∑

j=1

‖f − �(p)
k (f )‖p

Lp[�j−1,�j ] = k · (�k(f ))p

follows from (11) and (12). For p = ∞, (i) is verified analogously.
Consider a polynomial spline � ∈ �k,r and let 0 = t0 < · · · < tk = 1 denote the corresponding

knots. Furthermore, let � ∈ ]0, 1[. For the proof of (ii) we put

j = �j,�·�k(f )(f )

for j = 0, . . . , k. Then k < 1, which implies

[j−1, j ] ⊆ [tj−1, tj ]
for some j ∈ {1, . . . , k}. Consequently, by Lemma 4,

‖f − �‖L∞[0,1] �‖f − �‖L∞[j−1,j ] � inf
�∈�r

‖f − �‖L∞[j−1,j ] = � · �k(f ).

For the proof of (iii) we define

� = ��,�·�m(f )(f )

for � = 0, . . . , m. Then m < 1, which implies

[�i−1, �i
] ⊆ [tji−1, tji

]
for some indices 1�j1 � · · · �jm−k+1 �k and 1��1 < · · · < �m−k+1 �m. Hence, by Lemma
4,

‖f − �‖p

Lp[0,1] �
m−k+1∑

i=1

inf
�∈�r

‖f − �‖p
Lp[�i−1,�i

] = (m − k + 1) · �p · (�m(f ))p.

for 1�p < ∞. Letting � tend to one completes the proof. �
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4. Approximation of integrated Wiener processes

LetW denote a Wiener process and consider the s-fold integrated Wiener processes W(s) defined
by W(0) = W and

W(s)(t) =
∫ t

0
W(s−1)(u) du

for t �0 and s ∈ N. We briefly discuss some properties of W(s) that will be important in the
sequel.

The scaling property of the Wiener process implies that for every � > 0 the process (�−(s+1/2) ·
W(s)(� · t))t �0 is an s-fold integrated Wiener process, too. This fact will be called the scaling
property of W(s).

While W(s) has no longer independent increments for s�1, the influence of the past is very
explicit. For z > 0 we define zW

(s) inductively by

zW
(0)(t) = W(t + z) − W(z)

and

zW
(s)(t) =

∫ t

0
zW

(s−1)(u) du.

Then it is easy to check that

W(s)(t + z) =
s∑

i=0

t i

i! W(s−i)(z) + zW
(s)(t). (13)

Consider the filtration generated by W, which coincides with the filtration generated by W(s),
and let � denote a stopping time with P (� < ∞) = 1. Then the strong Markov property of W
implies that the process

�W
(s) = (�W

(s)(t))t �0

is an s-fold integrated Wiener process, too. Moreover, the processes �W
(s) and (1[0,�](t)·W(t))t �0

are independent, and consequently, the processes �W
(s) and (1[0,�](t)·W(s)(t))t �0 are independent

as well. These facts will be called the strong Markov property of W(s).
Fix s ∈ N0. In the sequel we assume that r �s. For any fixed ε > 0 we consider the sequence

of stopping times �j,ε(W
(s)), which turn out to be finite a.s., see (14), and therefore are strictly

increasing, see Lemma 4. Moreover, for j ∈ N, we define

�j,ε = �j,ε(W
(s)) − �j−1,ε(W

(s)).

These random variables yield the lengths of consecutive maximal subintervals that permit best
approximation from the space �r with error at most ε. Recall that F ⊆ C [0, ∞[ is defined via
properties (8) and (9) and that � = s + 1

2 + 1/p.
In the case s = 0 and r = 1 the analogous construction with interpolation instead of best

approximation has already been used for the study of rates of convergence in the functional law
of the iterated logarithm, see [8].
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Lemma 6. The s-fold integrated Wiener process W(s) satisfies

P (W(s) ∈ F) = 1.

For every ε > 0 and m ∈ N the random variables �j,ε form an i.i.d. sequence with

�1,ε
d= ε1/� · �1,1 and E (�m

1,1) < ∞.

Proof. We claim that

E (�j,ε(W
(s))) < ∞ (14)

for every j ∈ N.
For the case j = 1 let Z = 
[0,1](W(s)) and note that


[0,t](W(s))
d= t� · Z

follows for t > 0 from the scaling property of W(s). Hence we have

P (�1,ε(W
(s)) < t) = P (
[0,t](W(s)) > ε) = P (Z > ε · t−�), (15)

which, in particular, yields

�1,ε(W
(s))

d= ε1/� · �1,1(W
(s)). (16)

According to Corollary 17, there exists a constant c > 0 such that

P (Z�	)� exp(−c · 	−1/(s+1/2))

holds for every 	 ∈ ]0, 1]. We conclude that

P (�1,1(W
s)) > t)� exp(−c · t)

if t �1, which implies E (�m
1,1(W

(s))) < ∞ for every m ∈ N.

Next, let j �2, put � = �j−1,ε(W
(s)) and �′ = �j,ε(W

(s)), and assume that E (�m) < ∞. From
representation (13) and the fact that r �s we derive


[�,�′](W(s)) = 
[0,�′−�](�W(s)),

and hence it follows that

�′ = � + �1,ε(�W
(s)). (17)

We have E ((�1,ε(�W
(s)))m) < ∞, since �W

(s) is an s-fold integrated Wiener process again, and
consequently E ((�′)m) < ∞.

We turn to the properties of the sequence �j,ε. Due to (16) and (17) we have

�j,ε = �1,ε(�W
(s))

d= �1,ε(W
(s))

d= ε1/� · �1,1.

Furthermore, �j,ε and (1[0,�](t) · W(s)(t))t �0 are independent because of the strong Markov
property of W(s), and therefore �j,ε and (�1,ε, . . . , �j−1,ε) are independent as well.
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It remains to show that the trajectories of W(s) a.s. satisfy (9). By the properties of the sequence
�j,ε we have

�j,ε(W
(s))

d= ε1/� · �j,1(W
(s)). (18)

Observing (14) we conclude that

P

(
lim
ε→0

�j,ε(W
(s))� t

)
= lim

ε→0
P (�j,ε(W

(s))� t)

= lim
ε→0

P (�j,1(W
(s))� t/ε1/�) = 0

for every t > 0, which completes the proof. �

Because of Lemma 6, Proposition 5 yields upper and lower bounds for the error of spline
approximation of W(s) in terms of the random variable

Vk = �k(W
(s)).

Remark 7. Note that W(s) a.s. satisfies W(s)|[u,v] 	∈ �r for all 0�u < v. Assume that p < ∞.
Then v → 
[u,v](W(s)) is a.s. strictly increasing for all u�0. We use Lemma 4(iii) and Lemma
6 to conclude that, with probability one, Vk is the unique solution of

�k,Vk
(W(s)) = 1.

Consequently, due to (11), we a.s. have equality in Proposition 5(i) for 1�p < ∞, too. Note
that with positive probability solutions ε of the equation �k,ε(W

(s)) = 1 fail to exist in the case
p = ∞.

To complete the analysis of spline approximation methods we study the asymptotic behavior
of the sequence Vk .

Lemma 8. For every 1�q < ∞,(
E V

q
k

)1/q ≈ (k · E (�1,1))
−�.

Furthermore, with probability one,

Vk ≈ (k · E (�1,1))
−�.

Proof. Put

Sk = 1/k ·
k∑

j=1

�j,1

and use (18) to obtain

P (Vk �ε) = P (�k,ε(W
(s))�1) = P (k−� · S

−�
k �ε). (19)

Therefore

E (V
q
k ) = k−�q · E (S

−�q

k ),
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and for the first statement it remains to show that

E (S
−�q

k ) ≈ (E (�1,1))
−�q .

The latter fact follows from Proposition 15, if we can verify that �1,1 has a proper lower tail
behavior (29). To this end we use (15) and the large deviation estimate (33) to obtain

P (�1,1 < 	) = P (
[0,1](W(s)) > 	−�)

� P (‖W(s)‖Lp[0,1] > 	−�)

� exp(−c · 	−2�)

with some constant c > 0 for all 	�1.
In order to prove the second statement, put

S∗
k = (k · 2)−1/2 ·

k∑
j=1

(�j,1 − �),

where � = E (�1,1) and 2 denotes the variance of �1,1. Let � > 1. Then

P (Vk > � · (k · �)−�) = P (Sk < �−1/� · �) = P (S∗
k < k1/2 · �̃)

with

�̃ = (�−1/� − 1)/ · � < 0,

due to (19). We apply a local version of the central limit theorem, which holds for i.i.d. sequences
with a finite third moment, see [19, Theorem V.14], to obtain

P (Vk > � · (k · �)−�)

�c1 · k−1/2 · (1 + k1/2 · |̃�|)−3 + (2�)−1/2 ·
∫ k1/2 ·̃�

−∞
exp(−u2/2) du

�c2 · k−2

with constants ci > 0. For every � < 1 we get

P (Vk < � · (k · �)−�)�c2 · k−2 (20)

in the same way. It remains to apply the Borel–Cantelli Lemma. �

4.1. Proof of (4), (5), and the upper bounds in (1), (2), (3)

Consider the methods

X̂
(p)
k = �(p)

k (W(s)) ∈ Nk,r . (21)

Observe Remark 7 and use Proposition 5(i) as well as Lemma 6 to obtain

‖W(s) − X̂
(p)
k ‖Lp[0,1] = k1/p · Vk a.s.

Now, apply Lemma 8 to obtain (4) and (5). Clearly, (4) implies the upper bounds in (1), (2),
and (3).
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4.2. Proof of (6) and the lower bound in (2)

Consider an arbitrary sequence of approximations X̂k ∈ Nk,r and put

mk = ��/(s + 1
2 ) · k�.

Use Lemma 6, and apply Proposition 5(ii) in the case p = ∞ and Proposition 5(iii) in the case
p < ∞ to obtain

‖W(s) − X̂k‖Lp[0,1] �(mk − k + 1)1/p · Vmk
a.s.

Clearly, mk ≈ �/(s + 1/2) · k. Hence, by Lemma 8,

(mk − k)1/p · Vmk
≈ (mk − k)1/p · (

E V
q
mk

)1/q

≈ k−(s+1/2) · p−1/p · �−� · (s + 1
2 )s+1/2 · (E (�1,1))

−�

with probability one, which implies (6) and the lower bound in (2).

4.3. Proof of the lower bound in (1)

Let k ∈ N and consider X̂k ∈ Nr such that �(X̂k)�k, i.e.,

E∗
( ∞∑

�=1

� · 1B�

)
�k (22)

for B� = {
X̂(·) ∈ ��,r \ ��−1,r

}
, where �0,r = ∅. By Proposition 5(ii) and Lemma 6,

E∗∥∥W(s) − X̂k

∥∥q

L∞[0,1] �E∗
( ∞∑

�=1

1B�
· V

q
�

)
.

For � ∈ ]0, 1[, � = E (�1,1), and L ∈ N we define

A� = {
V� > � · (� · �)−�}

,

and

CL =
L⋃

�=1

B�.

Since ��(f )���+1(f ) for f ∈ F , we obtain
∞∑

�=1

1B�
· V

q
� �

L∑
�=1

1B�
· V

q
L +

∞∑
�=L+1

1B�
· V

q
�

�
L∑

�=1

1B�∩AL
· V

q
L +

∞∑
�=L+1

1B�∩A�
· V

q
�

� �q�−�q ·
(
L−�q · 1CL∩AL

+
∞∑

l=L+1

�−�q · 1B�∩A�

)

� �q�−�q ·
(
L−�q · (1CL

− 1Ac
L
) +

∞∑
l=L+1

�−�q · (1B�
− 1Ac

�
)
)
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with probability one, which implies

�−q��q · E∗
( ∞∑

�=1

1B�
· V

q
�

)
� E∗

(
L−�q · 1CL

+
∞∑

l=L+1

�−�q · 1B�

)

−E

(
L−�q · 1Ac

L
+

∞∑
l=L+1

�−�q · 1Ac
�

)
.

From (20) we infer that P (Ac
�)�c1 · �−2 with a constant c1 > 0. Hence there exists a constant

c2 > 0 such that

�(L) = E∗
(

L−�q · 1CL
+

∞∑
l=L+1

�−�q · 1B�

)
− c2 · L−�q−1

satisfies

�−q��q · E∗∥∥W(s) − X̂k

∥∥q

L∞[0,1] ��(L) (23)

for every L ∈ N.
Put � = (1 + 2�q)/(2 + 2�q), and take L(k) ∈ [k� − 1, k�]. We claim that there exists a

constant c3 > 0 such that

k�q · �(L(k))�
(

1 − k−(1−�)�q
)1+�q − c3 · k−1/2. (24)

First, assume that the outer probability of CL satisfies P ∗(CL)�k−(1−�)�q . Then

k�q · �(L(k)) � k�q ·
(
k−��q · P ∗(CL) − c2 · (k� − 1)−�q−1

)
� 1 − c3 · k−1/2

with a constant c3 > 0. Next, assume P ∗(CL) < k−(1−�)�q and use (22) to derive

1 − k−(1−�)�q � P ∗(Cc
L) = E∗

( ∞∑
l=L+1

1B�

)

= E∗
( ∞∑

l=L+1

(� · 1B�
)�q/(1+�q) · (�−�q · 1B�

)1/(1+�q)

)

� E∗
(( ∞∑

l=L+1

� · 1B�

)�q/(1+�q)

·
( ∞∑

l=L+1

�−�q · 1B�

)1/(1+�q))

�
(

E∗
( ∞∑

l=L+1

� · 1B�

))�q/(1+�q)

·
(

E∗
( ∞∑

l=L+1

�−�q · 1B�

))1/(1+�q)

� k�q/(1+�q) ·
(

E∗
( ∞∑

l=L+1

�−�q · 1B�

))1/(1+�q)

.
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Consequently,

k�q · �(L(k)) � k�q ·
(

E∗
( ∞∑

�=L+1

�−�q · 1B�

)
− c2 · (k� − 1)−�q−1

)

�
(

1 − k−(1−�)�q
)1+�q − c3 · k−1/2,

which completes the proof of (24). By (23) and (24),

E∗∥∥W(s) − X̂k

∥∥q

L∞[0,1]��q�−�q · k−�q

for every � ∈ ]0, 1[.

4.4. Proof of the lower bound in (3)

Clearly it suffices to establish the lower bound claimed for eav
k,r (W

(s), L1, 1). For further use,
we shall prove a more general result.

Lemma 9. For every s ∈ N there exists a constant c > 0 with the following property. For every
X̂ ∈ Nr , every A ∈ A with P (A)� 4

5 , and every t ∈ ]0, 1] we have

E∗ (
1A · ‖W(s) − X̂‖L1[0,t]

)
�c · t s+3/2 · (�(X̂))−(s+1/2).

Proof. Because of the scaling property of W(s) it suffices to study the particular case t = 1.
Assume that �(X̂) < ∞ and put k = ��(X̂)� as well as

B = {X̂ ∈ �2k,r}.
Then

k��(X̂)�E∗((2k + 1) · 1Bc) = (2k + 1) · P ∗(Bc),

which implies P ∗(B)� 1
2 . Due to Lemma 6 and Proposition 5(iii),

1B · ‖W(s) − X̂‖L1[0,1] �1B · 2k · V4k a.s.

Put � = E (�1,1), choose 0 < c < (2�)−�, and define

Dk = {Vk > c · k−�}.
By (19) we obtain

P (Dk) = P (Sk �c−1/�)�P (Sk �2�).

Hence

lim
k→∞ P (Dk) = 1

due to the law of large numbers, and consequently P ∗(B ∩ Dk)� 2
5 if k is sufficiently large, say

k�k0. We conclude that

1A∩B∩D4k
· ‖W(s) − X̂‖L1[0,1] �1A∩B∩D4k

· c · 21−2� · k−(s+1/2) a.s.

and P ∗(A ∩ B ∩ D4k)�1/5 if 4k�k0. Take outer expectations to complete the proof. �
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Lemma 9 with A = � and t = 1 yields the lower bound in (3)

5. Approximation of diffusion processes

Let X denote the solution of the stochastic differential equation (7) with initial value x0, and
recall that the drift coefficient a and the diffusion coefficient b are supposed to satisfy conditions
(A1)–(A3). In the following we use c to denote unspecified positive constants, which may only
depend on x0, a, b and the averaging parameter 1�q < ∞.

Note that

E ‖X‖q

L∞[0,1] < ∞ (25)

and

E
(

sup
t∈[s1,s2]

|X(t) − X(s1)|q
)
�c · (s2 − s1)

q/2 (26)

for all 1�q < ∞ and 0�s1 �s2 �1, see [10, p. 138].

5.1. Proof of the upper bound in Theorem 3

In order to establish the upper bound, it suffices to consider the case of p = ∞ and r = 0, i.e.,
nonlinear approximation in supremum norm with piecewise constant splines.

We dissect X into its martingale part

M(t) =
∫ t

0
b(X(s)) dW(s)

and

Y (t) = x0 +
∫ t

0
a(X(s)) ds.

Lemma 10. For all 1�q < ∞ and k ∈ N, there exists an approximation Ŷ ∈ Nk,0 such that(
E∗‖Y − Ŷ‖q

L∞[0,1]
)1/q

�c · k−1.

Proof. Put ‖g‖Lip = sup0� s<t �1 |g(t) − g(s)|/|t − s| for g : [0, 1] → R, and define

Ŷ =
k∑

j=1

1](j−1)/k,j/k] · Y ((j − 1)/k).

By (A1) and (25),

E∗‖Y − Ŷ‖q

L∞[0,1] �E∗‖Y‖q

Lip · k−q �c · (
1 + E ‖X‖q

L∞[0,1]
) · k−q �c · k−q . �

Lemma 11. For all 1�q < ∞ and k ∈ N, there exists an approximation M̂ ∈ Nk,0 such that(
E∗‖M − M̂‖q

L∞[0,1]
)1/q

�c · k−1/2.
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Proof. Let

X̂ =
k∑

j=1

1](j−1)/k,j/k] · X((j − 1)/k).

Clearly, by (26),(
E ‖X − X̂‖q

L2[0,1]
)1/q

�c · k−1/2.

Define

R(t) =
∫ t

0
b(X̂(s)) dWs.

By the Burkholder–Davis–Gundy inequality and (A2),(
E ‖M − R‖q

L∞[0,1]
)1/q

� c ·
(

E
(∫ 1

0
(b(X(s)) − b(X̂(s)))2 ds

)q/2
)1/q

� c ·
(

E ‖X − X̂‖q

L2[0,1]
)1/q

� c · k−1/2. (27)

Note that

R = R̂ + V,

where

R̂ =
k∑

j=1

1](j−1)/k,j/k] · R((j − 1)/k)

and

V =
k∑

j=1

1](j−1)/k,j/k] · b(X((j − 1)/k)) · (W − W((j − 1)/k)).

According to Theorem 2, there exists an approximation Ŵ ∈ Nk,0 such that(
E∗‖W − Ŵ‖2q

L∞[0,1]
)1/(2q)

�c · k−1/2.

Using Ŵ we define V̂ ∈ N2k,0 by

V̂ =
k∑

j=1

1](j−1)/k,j/k] · b(X((j − 1)/k)) · (Ŵ − W((j − 1)/k)).

Clearly,

‖V − V̂ ‖L∞[0,1] �‖b(X)‖L∞[0,1] · ‖W − Ŵ‖L∞[0,1].
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Observing (25) and (A2), we conclude that(
E∗‖V − V̂ ‖q

L∞[0,1]
)1/q

�
(

E ‖b(X)‖2q

L∞[0,1]
)1/(2q) ·

(
E∗‖W − Ŵ‖2q

L∞[0,1]
)1/(2q)

� c · k−1/2. (28)

We finally define M̂ ∈ N2k,0 by M̂ = R̂ + V̂ . Since

M − M̂ = (M − R) + (V − V̂ ),

it remains to apply estimates (27) and (28) to complete the proof. �

The preceding two lemma imply ek,0(X, L∞, q)�c · k−1/2 as claimed.

5.2. Proof of the lower bound in Theorem 3

For establishing the lower bound it suffices to study the case p = q = 1. Moreover, we assume
without loss of generality that b(x0) > 0.

Choose 	 > 0 as well as a function b0 : R → R such that:

(a) b0 is differentiable with a bounded derivative,
(b) infx∈R b0(x)�b(x0)/2,
(c) b0 = b on the interval [x0 − 	, x0 + 	].

We will use a Lamperti transform based on the space-transformation

g(x) =
∫ x

x0

1

b0(u)
du.

Note that g′ = 1/b0 and g′′ = −b′
0/b

2
0, and define H1, H2 : C[0, ∞[→ C[0, ∞[ by

H1(f )(t) =
∫ t

0

(
g′a + g′′/2 · b2)(f (s)) ds

and

H2(f )(t) = g(f (t)).

Put H = H2 − H1. Then by the Itô formula,

H(X)(t) =
∫ t

0

b(X(s))

b0(X(s))
dW(s).

The idea of the proof is as follows. We show that any good spline approximation of X leads
to a good spline approximation of H(X). However, since with a high probability, X stays within
[x0 − 	, x0 + 	] for some short (but nonrandom) period of time, approximation of H(X) is not
easier than approximation of W, modulo constants.

First, we consider approximation of H1(X).

Lemma 12. For every k ∈ N there exists an approximation X̂1 ∈ Nk,0 such that

E∗‖H1(X) − X̂1‖L1[0,1] �c · k−1.
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Proof. Observe that
∣∣g′a + g′′/2 · b2

∣∣(x)�c · (1 + x2), and proceed as in the Proof of Lemma
10. �

Next, we relate approximation of X to approximation of H2(X).

Lemma 13. For every approximation X̂ ∈ Nr with �(X̂) < ∞ there exists an approximation
X̂2 ∈ Nr such that

�(X̂2)�2 · �(X̂)

and

E∗‖H2(X) − X̂2‖L1[0,1] �c · (
E∗‖X − X̂‖L1[0,1] + 1/�(X̂)

)
.

Proof. For a fixed � ∈ � let X̂(�) be given by

X̂(�) =
k∑

j=1

1]tj−1,tj ] · �j .

We refine the corresponding partition to a partition 0 = t̃0 < · · · < t̃̃k = 1 that contains all the
points i/�, where � = ��(X̂)�. Furthermore, we define the polynomials �̃j ∈ �r by

X̂(�) =
k̃∑

j=1

1]̃tj−1 ,̃tj ] · �̃j .

Put f = X(�) and define

X̂2(�) =
k̃∑

j=1

1]̃tj−1 ,̃tj ] · qj

with polynomials

qj = g(f (̃tj−1)) + g′(f (̃tj−1)) · (̃�j − f (̃tj−1)) ∈ �r .

Let f̂2 = X̂2(�). If t ∈ ]̃
tj−1, t̃j

] ⊆ ](i − 1)/�, i/�], then

|H2(f )(t) − f̂2(t)|
= ∣∣g(f (t)) − g(f (̃tj−1)) − g′(f (̃tj−1)) · (̃�j (t) − f (̃tj−1))

∣∣
�

∣∣g(f (t)) − g(f (̃tj−1)) − g′(f (̃tj−1)) · (f (t) − f (̃tj−1))
∣∣

+ ∣∣g′(f (̃tj−1))
∣∣ · |f (t) − �̃j (t)|

�c ·
(
|f (t) − f (̃tj−1)|2 + |f (t) − �̃j (t)|

)
�c ·

(
sup

s∈](i−1)/�,i/�]
|f (s) − f ((i − 1)/�)|2 + |f (s) − �̃j (s)|

)
.

Consequently, we may invoke (26) to derive

E∗‖H2(X) − X̂2‖L1[0,1] �c · (
1/�(X̂) + E∗‖X − X̂‖L1[0,1]

)
.

Moreover, �(X̂2)�2 · �(X̂). �
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We proceed with establishing a lower bound for approximation of H(X).

Lemma 14. For every approximation X̂ ∈ Nr ,

E∗‖H(X) − X̂‖L1[0,1] �c · (�(X̂))−1/2.

Proof. Choose t0 ∈ ]0, 1] such that

A =
{

sup
t∈[0,t0]

|X(t) − x0|�	
}

satisfies P (A)� 4
5 . Observe that

1A · ‖H(X) − X̂‖L1[0,1] �1A · ‖W − X̂‖L1[0,t0],

and apply Lemma 9 for s = 0. �

Now, consider any approximation X̂ ∈ Nr with k − 1 < �(X̂)�k, and choose X̂1 and X̂2
according to Lemmas 12 and 13, respectively. Then

E∗‖H(X) − (X̂2 − X̂1)‖L1[0,1]
�E∗‖H2(X) − X̂2‖L1[0,1] + E∗‖H1(X) − X̂1‖L1[0,1]
�c · (

E∗‖X − X̂‖L1[0,1] + (�(X̂))−1 + k−1)
�c · (

E∗‖X − X̂‖L1[0,1] + k−1).
On the other hand, �(X̂2 − X̂1)��(X̂2) + k�3 · k, so that

E∗‖H(X) − (X̂2 − X̂1)‖L1[0,1] �c · k−1/2

follows from Lemma 14. We conclude that

E∗‖X − X̂‖L1[0,1] �c · k−1/2,

as claimed.
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Appendix A. Convergence of negative moments of means

Let (�i )i∈N be an i.i.d. sequence of random variables such that �1 > 0 a.s. and E (�1) < ∞.
Put

Sk = 1/k ·
k∑

i=1

�i .
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Proposition 15. For every � > 0,

lim inf
k→∞ E (S−�

k )�(E (�1))
−�.

If

P (�1 < v)�c · v�, v ∈ ]0, v0] , (29)

for some constants c, �, v0 > 0, then

lim
k→∞ E (S−�

k ) = (E (�1))
−�.

Proof. Put � = E (�1) and define

gk(v) = � · v−(�+1) · P (Sk < v).

Thanks to the weak law of large numbers, P (Sk < v) tends to 1]�,∞[(v) for every v 	= �. Hence,
by Lebesgue’s theorem,

lim
k→∞

∫ ∞

�/2
gk(v) dv = �−� . (30)

Since

E (S−�
k ) =

∫ ∞

0
P (S−�

k > u) du =
∫ ∞

0
gk(v) dv

the asymptotic lower bound for E (S−�
k ) follows from (30).

Given (29), we may assume without loss of generality that c · v
�
0 < 1. We first consider the

case �1 �1 a.s., and we put

Ak =
∫ �/2

v0/k

gk(v) dv and Bk =
∫ v0/k

0
gk(v) dv.

For v0/k�v��/2 we use Hoeffding’s inequality to obtain

gk(v)�� · v−(�+1) · P (|Sk − �| > �/2)�� · (k/v0)
�+1 · 2 exp(−k/2 · �2),

which implies

lim
k→∞ Ak = 0.

On the other hand, if �k > �, then

Bk = k� · � ·
∫ v0

0
v−(�+1) · P

( k∑
i=1

�i < v
)

dv

� k� · � ·
∫ v0

0
v−(�+1) · (P (�1 < v))k dv

� k� · � · ck ·
∫ v0

0
v�k−(�+1) dv

= k� · � · (�k − �)−1 · ck · v
�k−�
0 ,
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and therefore

lim
k→∞ Bk = 0.

In view of (30) we have thus proved the proposition in the case of bounded variables �i .
In the general case put �i,N = min{N, �i} as well as Sk,N = 1/k · ∑k

i=1 �i,N , and apply the
result for bounded variables to obtain

lim sup
k→∞

E (S−�
k )� inf

N∈N
lim sup
k→∞

E (S−�
k,N ) = inf

N∈N
(E �1,N )−� = (E �1)

−�

by the monotone convergence theorem. �

Appendix B. Small deviations of W(s) from �r

Let X denote a centered Gaussian random variable with values in a normed space (E, ‖ ·‖), and
consider a finite-dimensional linear subspace � ⊂ E. We are interested in the small deviation
behavior of

d(X, �) = inf
�∈�

‖X − �‖.

Obviously,

P (‖X‖�ε)�P (d(X,�)�ε) (31)

for every ε > 0. We establish an upper bound for P (d(X,�)�ε) that involves large deviations
of X, too.

Proposition 16. If dim(�) = r then

P (d(X,�)�ε)�(4�/ε)r · P (‖X‖�2ε) + P (‖X‖�� − ε)

for all ��ε > 0.

Proof. Put B
(x) = {y ∈ E : ‖y − x‖�
} for x ∈ E and 
 > 0, and consider the sets
A = � ∩ B�(0) and B = Bε(0). Then

{d(X, �)�ε} ⊂ {X ∈ A + B} ∪ {‖X‖�� − ε},
and therefore it suffices to prove

P (X ∈ A + B)�(4�/ε)r · P (‖X‖�2ε). (32)

Since 1/� · A ⊂ � ∩ B1(0), the ε-covering number of A is not larger than (4�/ε)r , see
[1, Eq. (1.1.10)]. Hence

A ⊂
n⋃

i=1

Bε(xi)

for some x1, . . . , xn ∈ E with n�(4�/ε)r , and consequently,

A + B ⊂
n⋃

i=1

B2ε(xi).
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Due to Anderson’s inequality we have

P (X ∈ B2ε(xi))�P (X ∈ B2ε(0)),

which implies (32). �

Now, we turn to the specific case of X = (W(s)(t))t∈[0,1] and E = Lp[0, 1], and we consider
the subspace � = �r of polynomials of degree at most r.

According to the large deviation principle for the s-fold integrated Wiener process,

− log P (‖W(s)‖Lp[0,1] > t) � t2 (33)

as t tends to infinity, see, e.g., [5]. Furthermore, the small ball probabilities satisfy

− log P (‖W(s)‖Lp[0,1] �ε) � ε−1/(s+1/2) (34)

as ε tends to zero, see, e.g., [12,13].

Corollary 17. For all r, s ∈ N0 and 1�p�∞ we have

− log P (d(W(s), �r )�ε) � ε−1/(s+1/2)

as ε tends to zero.

Proof. From (31) and (34) we derive

− log P (d(W(s), �r )�ε) � − log P (‖W(s)‖Lp[0,1] �ε) � ε−1/(s+1/2),

yielding the upper bound in the corollary. For the lower bound we employ Proposition 16 with
� = ε−� for � = (2s + 1)−1 to obtain

P (d(W(s), �r )�ε)

�4r · ε−r(1+�) · P (‖W(s)‖Lp[0,1] �2ε) + P (‖W(s)‖Lp[0,1] �ε−� − ε). (35)

However, for ε1+� � 1
2 we have ε−�/2�ε−� − ε�ε−� and thus, using (33),

− log P (‖W(s)‖Lp[0,1] �ε−� − ε) � ε−2� = ε−1/(s+1/2)

as ε tends to zero. Furthermore, by (34),

− log
(

4r · ε−r(1+�) · P (‖W(s)‖Lp[0,1] �2ε)
)

� ε−1/(s+1/2).

The latter two estimates, together with (35) and the elementary inequality log(x + y)� log(2) +
max(log(x), log(y)), yield the lower bound in the corollary. �
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