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ON THE STABILITY OF INERTIAL SYSTEMS

Summary :

e ———r e

The system described by the differential equation

]
o

X + £(o)

where o = a_x + ali, a_, a;>0 1s stable provided of(0)>0,
o # 0, L: f(u) du » = as |o| » =, The present paper discusses
some properties of the class of higher order systems which are
obtalned by coupling second order systems of the above form.
Sufficient conditions are derived for such a coupled system to

be stable. The controllability of the coupled system when each

subsystem is forced, as well as the oscillatory behavior of the

system 1s discussed,




l. Introduction

The stabllity of systems described by the differential

equations

yq T Yi(yl’ Yoseeey ym) (1)
i=1,2,..., m

has been extensively investigated by Liapunov's Direct Method.
An extensive bibliography to this subject may be found in the
recent survey paper by Brockett [1l]. The present paper discusses
the stabllity properties of inertial systems described by the

differential equations

» e
[}

g = X (xqs Xpyeen, X)) (2)
i = 1’2’..., n [ ]

Obviously, the system (2) may be reduced to the form (1) hut
there are certain classes of systems which may be lnvestigatcd
readily in the form (2). Aggarwal and Richie [2] have investigated

the stabillity and oscillatory behavior for the systems described

by differential equatilons




Xy + £y, il) + gy(xq, Xosrees X ) =0
i= 1’2’000’ n L]
This studyls a continuation of the above investigation and the
system under discussion here are obtalned by coupling second
order systems described by the differential equation
X + £(o) = 0 (3)

where o = a_ + a x and

1
(1) f£(0) = 0, of(0)>0, 0 # O
o
(11) [ f(w)du » = as [o] > = (%)
(111) a_, a; are real .
The coupled system 1s of the form
Xy + fi(oi) + ki(ol, Tpseens on) = 0 (4)

where

a 4%y + a)4%y and 1 = 1,2,..., n .




-
Hepe wpaln the condltions (#*) hold for the funetion fi(oi)

aid the constants 8,1 and a,y» are real, 1 = 1,2,..., n. It
I l'ound that the properties of the higher order system may be
bawed upon the correspondlng properties of the second order
systems and the ¢oupling, and with this in view, the properties
o' the second order system will be discussed and these properties
will be used In the study of the coupled system.

Twe results due to LaSalle [3] and Cetaev [U4] are given
below for the sake of completeness since these results will be

used extenslvely.

Ladalle's Theorem: Given the system
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(LY W(g) » 0 forall & # 0, V() =40

(11Y V(g < 0 for all &

VITROV(EY » > as [HElD - =
3 3 4 ljg B et - g » J PR - -
where (j5|] = S &n} and If V is not identically

zero along any sclution other than the origin, then the system

Is asymprotically stable In the large.




Cetaev's Theorem: Gilven the system

E=X(8), end

let @ be a nelghborhood of the origin. Further, let there be
glven a scalar function V(E) and a reglon 29 in 2 with

the following properties

(1) V(g) has continuous first partials in @
(11) V(g) and V(g) are positive in @,

(111) At the boundary of poilnts of @ inside @, V(g) = O

1l
(iv) The origin 1is a boundary point of 21, then the origin

1s an unstable singular point.

For compactness we shall use the notation
o = (01,02,..., on)
in the following.

2. Results on the Second Order System

(a) ags a; > 0

The system (3) 1s asymptotically stable in the large using

the Liapunov function




v oalg z? o
= gaox + f f(u)du . (5)
o
»
in this case

Vo= -a £2(q) , (6)

a negative semi-definite function, i.owever applying the result due

to LaSalle mentioned above glves asymptotic stability in the large.

(b) a, >0, a; <0,
The system (3) is unstable and the result follows immedjutely

from reversing time in case (a).
(c) ags 81 < 0

The function (5) 1s indefinite whereas i%s derivative (6)
1s positive semi-definite. The configuration of constant V
curves in the (x, o) plane is hyperbolic in nature and the
solution point temporarily approaches the origin and then diverges
again from the origin as the time elapses. The conditions of

Cetaev's Theorem are satisfied and the system (3) unstable.

(d) a_ < 0, a; > 0 .

o)




The system (3) i1s unstable and this result follows
immediately from reversing time in case (c).

The above results may be summarized as follows: The system
(3) 18 stable if and only 1if 8, 8y - 0 and unstable otherwlse,
It may be further observed that the system (3) does not have
any periodic solution (except of course, the trivial solution

L]

X = x = 0),

3. Results on the Coupled System

(a) Stability. The system (4) 1s asymptotically stable in

the large provided:

(i> aoi, ali i O’ i = 1’2’;00’ n
0, 0o ¥ 0,

”
——

(11) k,(3) = U_,(3) where U(J)
i ol
>
U(0) =0 for 1 =1,2,..., n, and
(141) The set of equations fi(oi) + ki(g) = 0
ES
{1 =1,2,..., n has only the trivial solution ¢ = 0., (Also
each f, satisfles the conditions (%) ),
This result follows immediately by using the Liapunov

function

V = it ? a i2 + ? ’oif (u)du + U(g) (6)
2 izl ol™1 £ / i :

Here




e s e ot s e e o g o G e e

T ] ey (£,00,) + U ()2
i=1 %1

(7)

and the conditions of LaSalle's Theorem are satisfied.
The condition (111) above insures that origin in the space
(xl,..., Xy il,..., xn) 1s the only singular point for the

system (4). It may be observed that the function

n o
u@) + 3 [ e lway (8)
i=1 o
is radially unbounded positive definite potential function., The
above result may be stated in sllightly different fashion at
follows:

The system,

.x.i + hi(g) = 0’ i - 1’2’000’ n and (9)

%
hy(3) = U_ (3)
%1
. o
where U (3) 1s a positive definite radially unbounded function
and h,(3) =0 41 =1,..., n has the trivial solution s =0,
1s asymptotically stable in the large. % 1s interesting to

compare this result with the properties of the system

X, + hy(¥) =0, 1=1,2,..., n and (10)

hy (%) = U;1<§)




.
where U (i) 1s positive definite and radially unbounded
function and hi(i) =0, 1=1,..., n has the triviai
solution X% = 0. This system (10) is conservative and has for

its solution

1

. *
5 x2 + U (?) = constant.

11

N3

Further 1t may be observed that the above ccnditions (%¥)
for the stabllity of the system (4) are sufficlent and not

necessary as seen from the followirg example.

+ o

X 1 = —aloy-0,)

(11)

+ 0

§2 5 = a(ol—o2) ,

The characteristic equation for the above system is

2

(s° + <aol+alls)(1+a»{s2+<a02+al2s><;+a»

2 | s
= o (ag,ta),s)(ag,tagys) = 0 .,

Now consider the case when the two systems are ldentical, the

characteristic equations is

2

2 -
(s + a + alls){s +(aOl + alls)(l +2a)} = 0




10

Eadhivn, o

"The system (11l) 1s stable provided a - -%, however, o > 0 is

necessary for the same system to be stable via the conditions ‘

(%%),

(b) Instability. In the case < 0,

801 7 0, 811
i=1,2,..., n the system (4) 1s unstable and the result

follows immediately from reversing time in the case (a) above.

In the case 8,4 < 0, a <0 1=1,2,..., n, the V

11

function (6) 1s indefinite and vV is positive definite, By
the application of Cetaev's Theorem, it follows that the system
1s unstable. The same holds for the case a

< 0, a > 0,

ol 11

i=1,|..’ nl
Hence, for the above combination of a's, the system (4)

does not have any periodic solutions.

(c¢) Controllability. It may be observed that

X, =u'y, , 1i=1,2,..., n (12)

is a controllable system since it may be reduced to the form

i = Ay + Bu where

‘010 ... .0]

000 ....0

0001...0

A:OOOQ.. O

OOO...Bl

000 ... .0
2nx2n




cor o
s MO O-

. » » - -

OO -

and, [B:AB] 1is

the form (12) by
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rank 2n. The system (4) may be put in

>
simple substitution u, = u', + fi(qﬂ+ki(c).
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