45,199 research outputs found

    Kinetically-controlled thin-film growth of layered β\beta- and γ\gamma-Nax_{x}CoO2_{2} cobaltate

    Full text link
    We report growth characteristics of epitaxial β\beta-Na0.6_{0.6}CoO2_{2} and γ\gamma-Na0.7_{0.7}CoO2_{2} thin films on (001) sapphire substrates grown by pulsed-laser deposition. Reduction of deposition rate could change structure of Nax_{x}CoO2_{2} thin film from β\beta-phase with island growth mode to γ\gamma-phase with layer-by-layer growth mode. The γ\gamma-Na0.7_{0.7}CoO2_{2} thin film exhibits spiral surface growth with multiterraced islands and highly crystallized texture compared to that of the β\beta-Na0.6_{0.6}CoO2_{2} thin film. This heterogeneous epitaxial film growth can give opportunity of strain effect of physical properties and growth dynamics of Nax_{x}CoO2_{2} as well as subtle nature of structural change.Comment: accepted for publication in Applied Physics Letter

    Meissner effect in the layered Kane-Mele model with Hubbard interaction

    Full text link
    We investigate the magnetic response in the quantum spin Hall phase of the layered Kane-Mele model with Hubbard interaction, and argue a condition to obtain the Meissner effect. The effect of Rashba spin orbit coupling is also discussed.Comment: 4 pages, accepted for publication in Journal of Physics: Conference Series as proceedings of International Symposium "Nanoscience and Quantum Physics 2011" (nanoPHYS'11) held in Toky

    Genuine Non-Self-Averaging and Ultra-Slow Convergence in Gelation

    Full text link
    In irreversible aggregation processes droplets or polymers of microscopic size successively coalesce until a large cluster of macroscopic scale forms. This gelation transition is widely believed to be self-averaging, meaning that the order parameter (the relative size of the largest connected cluster) attains well-defined values upon ensemble averaging with no sample-to-sample fluctuations in the thermodynamic limit. Here, we report on anomalous gelation transition types. Depending on the growth rate of the largest clusters, the gelation transition can show very diverse patterns as a function of the control parameter, which includes multiple stochastic discontinuous transitions, genuine non-self-averaging and ultra-slow convergence of the transition point. Our framework may be helpful in understanding and controlling gelation.Comment: 8 pages, 10 figure

    Strong and Electromagnetic Decays of Two New LambdacLambda_c^* Baryons

    Full text link
    Two recently discovered excited charm baryons are studied within the framework of Heavy Hadron Chiral Perturbation Theory. We interpret these new baryons which lie 308 \MeV and 340 \MeV above the Λc\Lambda_c as I=0I=0 members of a P-wave spin doublet. Differential and total decay rates for their double pion transitions down to the Λc\Lambda_c ground state are calculated. Estimates for their radiative decay rates are also discussed. We find that the experimentally determined characteristics of the Λc\Lambda_c^* baryons may be simply understood in the effective theory.Comment: 16 pages with 4 figures not included but available upon request, CALT-68-191

    Comment on DsDsπ0D_s^* \to D_s \pi^0 Decay

    Full text link
    We calculate the rate for DsDsπ0D_s^* \rightarrow D_s \pi^0 decay using Chiral Perturbation Theory. This isospin violating process results from π0\pi^0 - η\eta mixing, and its amplitude is proportional to (mdmu)/(ms(mu+md)/2)(m_d - m_u)/\bigl(m_s-(m_u+m_d)/2 \bigr). Experimental information on the branching ratio for DsDsπ0D_s^* \rightarrow D_s \pi^0 can provide insight into the pattern of SU(3)SU(3) violation in radiative DD^* decays.Comment: 7 pages with 2 figures not included but available upon request, CALT-68-191

    QCD effective action with a most general homogeneous field background

    Full text link
    We consider one-loop effective action of SU(3) QCD with a most general constant chromomagnetic (chromoelectric) background which has two independent Abelian field components. The effective potential with a pure magnetic background has a local minimum only when two Abelian components H_{\mu\nu}^3 and H_{\mu\nu}^8 of color magnetic field are orthogonal to each other. The non-trivial structure of the effective action has important implication in estimating quark-gluon production rate and p_T-distribution in quark-gluon plasma. In general the production rate depends on three independent Casimir invariants, in particular, it depends on the relative orientation between chromoelectric fields.Comment: 6 pages, 3 figures (9 pages in published version

    Simultaneously imaging of dielectric properties and topography in a PbTiO_3 crystal by near-field scanning microwave microscopy

    Full text link
    We use a near-field scanning microwave microscope to simultaneously image the dielectric constant, loss tangent, and topography in a PbTiO_3 crystal. By this method, we study the effects of the local dielectric constant and loss tangent in the geometry of periodic domains on the measured resonant frequency, and quality factor. We also carry out theoretical calculations and the results agree well with the experimental data and reveal the anisotropic nature of dielectric constant

    Compressible Sub-Alfvenic MHD turbulence in Low-beta Plasmas

    Full text link
    We present a model for compressible sub-Alfvenic isothermal magnetohydrodynamic (MHD) turbulence in low-beta plasmas and numerically test it. We separate MHD fluctuations into 3 distinct families - Alfven, slow, and fast modes. We find that, production of slow and fast modes by Alfvenic turbulence is suppressed. As a result, Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes show isotropy and a scaling similar to acoustic turbulence.Comment: 4 pages, 8 figures, Phys. Rev. Lett., in pres

    Magnetic Moments of Heavy Baryons

    Get PDF
    First non-trivial chiral corrections to the magnetic moments of triplet (T) and sextet (S^(*)) heavy baryons are calculated using Heavy Hadron Chiral Perturbation Theory. Since magnetic moments of the T-hadrons vanish in the limit of infinite heavy quark mass (m_Q->infinity), these corrections occur at order O(1/(m_Q \Lambda_\chi^2)) for T-baryons while for S^(*)-baryons they are of order O(1/\Lambda_\chi^2). The renormalization of the chiral loops is discussed and relations among the magnetic moments of different hadrons are provided. Previous results for T-baryons are revised.Comment: 11 Latex pages, 2 figures, to be published in Phys.Rev.

    Weak boson fusion production of supersymmetric particles at the LHC

    Full text link
    We present a complete calculation of weak boson fusion production of colorless supersymmetric particles at the LHC, using the new matrix element generator SUSY-MadGraph. The cross sections are small, generally at the attobarn level, with a few notable exceptions which might provide additional supersymmetric parameter measurements. We discuss in detail how to consistently define supersymmetric weak couplings to preserve unitarity of weak gauge boson scattering amplitudes to fermions, and derive sum rules for weak supersymmetric couplings.Comment: 24 p., 3 fig., 9 tab., published in PRD; numbers in Table IV corrected to those with kinematic cuts cite
    corecore