643 research outputs found

    On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures

    Full text link
    This note, mostly expository, is devoted to Poincar{\'e} and log-Sobolev inequalities for a class of Boltzmann-Gibbs measures with singular interaction. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from convexity. We prove and characterize optimality in the case of quadratic confinement via a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gaussian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics admitting the Hermite-Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the consequence of the log-Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.Comment: Minor improvements. To appear in Geometric Aspects of Functional Analysis -- Israel Seminar (GAFA) 2017-2019", Lecture Notes in Mathematics 225

    Quantum Calogero-Moser Models: Integrability for all Root Systems

    Get PDF
    The issues related to the integrability of quantum Calogero-Moser models based on any root systems are addressed. For the models with degenerate potentials, i.e. the rational with/without the harmonic confining force, the hyperbolic and the trigonometric, we demonstrate the following for all the root systems: (i) Construction of a complete set of quantum conserved quantities in terms of a total sum of the Lax matrix (L), i.e. (\sum_{\mu,\nu\in{\cal R}}(L^n)_{\mu\nu}), in which ({\cal R}) is a representation space of the Coxeter group. (ii) Proof of Liouville integrability. (iii) Triangularity of the quantum Hamiltonian and the entire discrete spectrum. Generalised Jack polynomials are defined for all root systems as unique eigenfunctions of the Hamiltonian. (iv) Equivalence of the Lax operator and the Dunkl operator. (v) Algebraic construction of all excited states in terms of creation operators. These are mainly generalisations of the results known for the models based on the (A) series, i.e. (su(N)) type, root systems.Comment: 45 pages, LaTeX2e, no figure

    Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes

    Get PDF
    Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle

    Contribution of anadromous fish to the diet of European catfish in a large river system

    Get PDF
    Many anadromous fish species, when migrating from the sea to spawn in fresh waters, can potentially be a valuable prey for larger predatory fish, thereby efficiently linking these two ecosystems. Here, we assess the contribution of anadromous fish to the diet of European catfish (Silurus glanis) in a large river system (Garonne, southwestern France) using stable isotope analysis and allis shad (Alosa alosa) as an example of anadromous fish. Allis shad caught in the Garonne had a very distinct marine delta(13)C value, over 8 per thousand higher after lipid extraction compared to the mean delta(13)C value of all other potential freshwater prey fish. The delta(13)C values of European catfish varied considerably between these two extremes and some individuals were clearly specializing on freshwater prey, whereas others specialized on anadromous fish. The mean contribution of anadromous fish to the entire European catfish population was estimated to be between 53% and 65%, depending on the fractionation factor used for delta(13)C

    Explicit solution of the quantum three-body Calogero-Sutherland model

    Get PDF
    Quantum integrable systems generalizing Calogero-Sutherland systems were introduced by Olshanetsky and Perelomov (1977). Recently, it was proved that for systems with trigonometric potential, the series in the product of two wave functions is a deformation of the Clebsch-Gordan series. This yields recursion relations for the wave functions of those systems. In this note, this approach is used to compute the explicit expressions for the three-body Calogero-Sutherland wave functions, which are the Jack polynomials. We conjecture that similar results are also valid for the more general two-parameters deformation introduced by Macdonald.Comment: 10 page

    Isometry theorem for the Segal-Bargmann transform on noncompact symmetric spaces of the complex type

    Get PDF
    We consider the Segal-Bargmann transform for a noncompact symmetric space of the complex type. We establish isometry and surjectivity theorems for the transform, in a form as parallel as possible to the results in the compact case. The isometry theorem involves integration over a tube of radius R in the complexification, followed by analytic continuation with respect to R. A cancellation of singularities allows the relevant integral to have a nonsingular extension to large R, even though the function being integrated has singularities.Comment: Final version. To appear in Journal of Functional Analysis. Minor revision

    Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes

    Get PDF
    Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle

    Silicon Nanoantenna Mix Arrays for a Trifecta of Quantum Emitter Enhancements

    Full text link
    Dielectric nanostructures have demonstrated optical antenna effects due to Mie resonances. Preliminary investigations on dielectric nanoantennas have been carried out for a trifecta of enhancements, i.e., simultaneous enhancements in absorption, emission directionality and radiative decay rates of quantum emitters. However, these investigations are limited by fragile substrates or low Purcell factor, which is extremely important for exciting quantum emitters electrically. In this paper, we present a Si mix antenna array to achieve the trifecta enhancement of ~1200 fold with a Purcell factor of ~47. The antenna design incorporates ~10 nm gaps within which fluorescent molecules strongly absorb the pump laser energy through a resonant mode. In the emission process, the antenna array increases the radiative decay rates of the fluorescence molecules via Purcell effect and provides directional emission through a separate mode. This work could lead to novel CMOS compatible platforms for enhancing fluorescence for biological and chemical applications.Comment: 20 pages, 4 figure

    Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes

    Get PDF
    Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle

    Bumetanide for autism: more eye contact, less amygdala activation.

    Get PDF
    We recently showed that constraining eye contact leads to exaggerated increase of amygdala activation in autism. Here, in a proof of concept pilot study, we demonstrate that administration of bumetanide (a NKCC1 chloride importer antagonist that restores GABAergic inhibition) normalizes the level of amygdala activation during constrained eye contact with dynamic emotional face stimuli in autism. In addition, eye-tracking data reveal that bumetanide administration increases the time spent in spontaneous eye gaze during in a free-viewing mode of the same face stimuli. In keeping with clinical trials, our data support the Excitatory/Inhibitory dysfunction hypothesis in autism, and indicate that bumetanide may improve specific aspects of social processing in autism. Future double-blind placebo controlled studies with larger cohorts of participants will help clarify the mechanisms of bumetanide action in autism
    • 

    corecore