320 research outputs found
Integrated Flush Air Data Sensing System Modeling for Planetary Entry Guidance with Direct Force Control
Flush air data sensing (FADS) systems have been previously used at both Earth and Mars to provide onboard estimates of angle of attack, sideslip angle, and dynamic pressure. However, these FADS data were often not used in an in-the-loop sense to inform the onboard guidance and control systems. A method to integrate FADS-derived density and wind estimates with a numerical predictor-corrector guidance algorithm is presented. The method is demonstrated in a high-fidelity simulation of a human-scale Mars entry vehicle that utilizes a hypersonic inflatable aerodynamic decelerator (HIAD) with direct force control. Effects on guidance commands and state uncertainties both with and without FADS system modeling are presented and discussed
Étude expérimentale et théorique de la production de nuclides légers rapides dans les interactions proton-noyau à haute énergie
Nous donnons la description d'une expérience réalisée au CERN et concernant la production de 1H, 2H, 3H, 3He, 4He lors des interactions proton-noyau (12C, 27Al, 197Au) à des angles variés (30°, 45°, 75°, 105°). Nous présentons également une théorie thermodynamique permettant d'interpréter les résultats expérimentaux obtenus
Thermocapillary actuation of liquid flow on chemically patterned surfaces
We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient |dT/dx| and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on w, |dT/dx| and V. In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies
Avalanche Dynamics in Wet Granular Materials
We have studied the dynamics of avalanching wet granular media in a rotating
drum apparatus. Quantitative measurements of the flow velocity and the granular
flux during avalanches allow us to characterize novel avalanche types unique to
wet media. We also explore the details of viscoplastic flow (observed at the
highest liquid contents) in which there are lasting contacts during flow,
leading to coherence across the entire sample. This coherence leads to a
velocity independent flow depth at high rotation rates and novel robust pattern
formation in the granular surface.Comment: 5 pages, 3 figures in color, REVTeX4, for smaller pdfs see
http://angel.elte.hu/~tegzes/condmat.htm
Aging in humid granular media
Aging behavior is an important effect in the friction properties of solid
surfaces. In this paper we investigate the temporal evolution of the static
properties of a granular medium by studying the aging over time of the maximum
stability angle of submillimetric glass beads. We report the effect of several
parameters on these aging properties, such as the wear on the beads, the stress
during the resting period, and the humidity content of the atmosphere. Aging
effects in an ethanol atmosphere are also studied. These experimental results
are discussed at the end of the paper.Comment: 7 pages, 9 figure
Stopping and Radial Flow in Central 58Ni + 58Ni Collisions between 1 and 2 AGeV
The production of charged pions, protons and deuterons has been studied in
central collisions of 58Ni on 58Ni at incident beam energies of 1.06, 1.45 and
1.93 AGeV. The dependence of transverse-momentum and rapidity spectra on the
beam energy and on the centrality of the collison is presented. It is shown
that the scaling of the mean rapidity shift of protons established for AGS and
SPS energies is valid down to 1 AGeV. The degree of nuclear stopping is
discussed; the IQMD transport model reproduces the measured proton rapidity
spectra for the most central events reasonably well, but does not show any
sensitivity between the soft and the hard equation of state (EoS). A radial
flow analysis, using the midrapidity transverse-momentum spectra, delivers
freeze-out temperatures T and radial flow velocities beta_r which increase with
beam energy up to 2 AGeV; in comparison to existing data of Au on Au over a
large range of energies only beta_r shows a system size dependence
Abundance of Delta Resonances in 58Ni+58Ni Collisions between 1 and 2 AGeV
Charged pion spectra measured in 58Ni-58Ni collisions at 1.06, 1.45 and 1.93
AGeV are interpreted in terms of a thermal model including the decay of Delta
resonances. The transverse momentum spectra of pions are well reproduced by
adding the pions originating from the Delta-resonance decay to the component of
thermal pions, deduced from the high transverse momentum part of the pion
spectra. About 10 and 18% of the nucleons are excited to Delta states at
freeze-out for beam energies of 1 and 2 AGeV, respectively.Comment: 14 pages, LaTeX with 3 included figures; submitted to Physics Letters
Isospin-tracing: A probe of non-equilibrium in central heavy-ion collisions
Four different combinations of Ru and Zr nuclei, both
as projectile and target, were investigated at the same bombarding energy of
400 MeV using a detector. The degree of isospin mixing between
projectile and target nucleons is mapped across a large portion of the phase
space using two different isospin-tracer observables, the number of measured
protons and the yield ratio. The experimental results
show that the global equilibrium is not reached even in the most central
collisions. Quantitative measures of stopping and mixing are extracted from the
data. They are found to exhibit a quite strong sensitivity to the in-medium
(n,n) cross section used in microscopic transport calculations.Comment: 4 pages RevTeX, 3 figures (ps files), submitted to Phys. Rev. Let
Identification of baryon resonances in central heavy-ion collisions at energies between 1 and 2 AGeV
The mass distributions of baryon resonances populated in near-central
collisions of Au on Au and Ni on Ni are deduced by defolding the spectra
of charged pions by a method which does not depend on a specific resonance
shape. In addition the mass distributions of resonances are obtained from the
invariant masses of pairs. With both methods the deduced mass
distributions are shifted by an average value of -60 MeV/c relative to the
mass distribution of the free resonance, the distributions
descent almost exponentially towards mass values of 2000 MeV/c^2. The observed
differences between and pairs indicate a contribution
of isospin resonances. The attempt to consistently describe the
deduced mass distributions and the reconstructed kinetic energy spectra of the
resonances leads to new insights about the freeze out conditions, i.e. to
rather low temperatures and large expansion velocities.Comment: 30 pages, 13 figures, Latex using documentstyle[12pt,a4,epsfig], to
appear in Eur. Phys. J.
Dragon-kings: mechanisms, statistical methods and empirical evidence
This introductory article presents the special Discussion and Debate volume
"From black swans to dragon-kings, is there life beyond power laws?" published
in Eur. Phys. J. Special Topics in May 2012. We summarize and put in
perspective the contributions into three main themes: (i) mechanisms for
dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii)
empirical evidence in a large variety of natural and social systems. Overall,
we are pleased to witness significant advances both in the introduction and
clarification of underlying mechanisms and in the development of novel
efficient tests that demonstrate clear evidence for the presence of
dragon-kings in many systems. However, this positive view should be balanced by
the fact that this remains a very delicate and difficult field, if only due to
the scarcity of data as well as the extraordinary important implications with
respect to hazard assessment, risk control and predictability.Comment: 20 page
- …