208 research outputs found

    Hypertriglyceridemia: a potential side effect of propofol sedation in critical illness

    Get PDF
    Purpose: Hypertriglyceridemia (hyperTG) is common among intensive care unit (ICU) patients, but knowledge about hyperTG risk factors is scarce. The present study aims to identify risk factors favoring its development in patients requiring prolonged ICU treatment. Methods: Prospective observational study in the medicosurgical ICU of a university teaching hospital. All consecutive patients staying ≥4days were enrolled. Potential risk factors were recorded: pathology, energy intake, amount and type of nutritional lipids, intake of propofol, glucose intake, laboratory parameters, and drugs. Triglyceride (TG) levels were assessed three times weekly. Statistics was based on two-way analysis of variance (ANOVA) and linear regression with potential risk factors. Results: Out of 1,301 consecutive admissions, 220 patients were eligible, of whom 99 (45%) presented hyperTG (triglycerides >2mmol/L). HyperTG patients were younger, heavier, with more brain injury and multiple trauma. Intake of propofol (mg/kg/h) and lipids' propofol had the highest correlation with plasma TG (r 2=0.28 and 0.26, respectively, both p<0.001). Infection and inflammation were associated with development of hyperTG [C-reactive protein (CRP), r 2=0.19, p=0.004]. No strong association could be found with nutritional lipids or other risk factors. Outcome was similar in normo- and hyperTG patients. Conclusions: HyperTG is frequent in the ICU but is not associated with adverse outcome. Propofol and accompanying lipid emulsion are the strongest risk factors. Our results suggest that plasma TG should be monitored at least twice weekly in patients on propofol. The clinical consequences of propofol-related hyperTG should be investigated in further studie

    Mechanical characterization of porous Ti base alloys produced by sintering space-holder method

    Full text link
    [ES] La búsqueda de materiales adecuados para su uso como implante implica una mayor investigación sobre los biomateriales, como lo son el titanio y sus aleaciones. Respecto a sus propiedades mecánicas, se debe garantizar una resistencia mecánica suficiente como para soportar cargas en uso, al igual que su rigidez ha de ser parecida a la del hueso humano. En el presente trabajo se miden diferentes propiedades mecánicas de materiales porosos de titanio y de la aleación Ti6Al4V, producidos por vía pulvimetalúrgica mediante sinterización con espaciador. Los resultados muestran la relación entre la porosidad y las propiedades mecánicas, indicando los casos en los que se presenta un compromiso entre la rigidez y la resistencia mecánica.[EN] The search of suitable materials for use as an implant involves more research of biomaterials, like titanium and its alloys. Regarding their mechanical properties, it must be guaranteed mechanical strength to support loads in use, as well as its stiffness must be similar to the bone. In this paper it have been measured several mechanical properties of porous titanium and Ti6Al4V alloy, produced by sintering powder metallurgy with space-holder method. The results show the relationship between porosity and mechanical properties and it is indicated in which cases it is presented a compromise between the stiffness and mechanical strength.Los autores agradecen al área de Ciencia de Materiales e Ingeniería Metalúrgica de la Universidad de Sevilla la ayuda prestada en el cálculo de la rigidez por ultrasonidos. Igualmente, los autores desean agradecer la financiación obtenida por el Ministerio de Ciencia e Innovación (proyecto PET2008_0158_02) y a la beca Grisolia /2009/040.Tojal Domenech, C.; Devaud, J.; Amigó, V.; Calero, JA. (2010). Caracterización mecánica de aleaciones porosas, base Ti, producidas mediante la técnica de sinterización con espaciador. Revista de Metalurgia. 46:27-32. https://doi.org/10.3989/revmetalmadrid.02.2XIIPMSS27324

    Memory consolidation in honey bees is enhanced by down-regulation of Down syndrome cell adhesion molecule and changes its alternative splicing

    Get PDF
    Down syndrome cell adhesion molecule (Dscam) gene encodes a cell adhesion molecule required for neuronal wiring. A remarkable feature of arthropod Dscam is massive alternative splicing generating thousands of different isoforms from three variable clusters of alternative exons. Dscam expression and diversity arising from alternative splicing have been studied during development, but whether they exert functions in adult brains has not been determined. Here, using honey bees, we find that Dscam expression is critically linked to memory retention as reducing expression by RNAi enhances memory after reward learning in adult worker honey bees. Moreover, alternative splicing of Dscam is altered in all three variable clusters after learning. Since identical Dscam isoforms engage in homophilic interactions, these results suggest a mechanism to alter inclusion of variable exons during memory consolidation to modify neuronal connections for memory retention

    The repeatability of cognitive performance:A meta-analysis

    Get PDF
    This is the author accepted manuscript. The final version is available from The Royal Society via the DOI in this record.Behavioural and cognitive processes play important roles in mediating an individual's interactions with its environment. Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively little is known about the repeatability of cognitive performance. To further our understanding of the evolution of cognition, we gathered 44 studies on individual performance of 25 species across six animal classes and used meta-analysis to assess whether cognitive performance is repeatable. We compared repeatability (R) in performance (1) on the same task presented at different times (temporal repeatability), and (2) on different tasks that measured the same putative cognitive ability (contextual repeatability). We also addressed whether R estimates were influenced by seven extrinsic factors (moderators): type of cognitive performance measurement, type of cognitive task, delay between tests, origin of the subjects, experimental context, taxonomic class and publication status. We found support for both temporal and contextual repeatability of cognitive performance, with mean R estimates ranging between 0.15 and 0.28. Repeatability estimates were mostly influenced by the type of cognitive performance measures and publication status. Our findings highlight the widespread occurrence of consistent inter-individual variation in cognition across a range of taxa which, like behaviour, may be associated with fitness outcomes.PKYC is supported by Japan Society for the Promotion of Science (PE1801); JOvH was funded by an ERC consolidator grant (616474). MC and this research was supported by a grant from the Human Frontier Science Program to ASC and JM-F (RGP0006/2015)

    A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey

    Get PDF
    BACKGROUND: The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile 'zombie', incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. METHODOLOGY AND PRINCIPAL FINDINGS: We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. CONCLUSIONS AND SIGNIFICANCE: We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach's motivation to initiate walking without interfering with other non-related behaviors

    Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera)

    Get PDF
    When smelling an odorant mixture, olfactory systems can be analytical (i.e. extract information about the mixture elements) or synthetic (i.e. creating a configural percept of the mixture). Here, we studied elemental and configural mixture coding in olfactory neurons of the honeybee antennal lobe, local neurons in particular. We conducted intracellular recordings and stimulated with monomolecular odorants and their coherent or incoherent binary mixtures to reproduce a temporally dynamic environment. We found that about half of the neurons responded as ‘elemental neurons’, i.e. responses evoked by mixtures reflected the underlying feature information from one of the components. The other half responded as ‘configural neurons’, i.e. responses to mixtures were clearly different from responses to their single components. Elemental neurons divided in late responders (above 60 ms) and early responder neurons (below 60 ms), whereas responses of configural coding neurons concentrated in-between these divisions. Latencies of neurons with configural responses express a tendency to be faster for coherent stimuli which implies employment in different processing circuits

    Axonal remodeling for motor recovery after traumatic brain injury requires downregulation of γ-aminobutyric acid signaling

    Get PDF
    Remodeling of the remnant neuronal network after brain injury possibly mediates spontaneous functional recovery; however, the mechanisms inducing axonal remodeling during spontaneous recovery remain unclear. Here, we show that altered γ-aminobutyric acid (GABA) signaling is crucial for axonal remodeling of the contralesional cortex after traumatic brain injury. After injury to the sensorimotor cortex in mice, we found a significant decrease in the expression of GABAAR-α1 subunits in the intact sensorimotor cortex for 2 weeks. Motor functions, assessed by grid walk and cylinder tests, spontaneously improved in 4 weeks after the injury to the sensorimotor cortex. With motor recovery, corticospinal tract (CST) axons from the contralesional cortex sprouted into the denervated side of the cervical spinal cord at 2 and 4 weeks after the injury. To determine the functional implications of the changes in the expression of GABAAR-α1 subunits, we infused muscimol, a GABA R agonist, into the contralesional cortex for a week after the injury. Compared with the vehicle-treated mice, we noted significantly inhibited recovery in the muscimol-treated mice. Further, muscimol infusion greatly suppressed the axonal sprouting into the denervated side of the cervical spinal cord. In conclusion, recovery of motor function and axonal remodeling of the CST following cortical injury requires suppressed GABAAR subunit expression and decreased GABAergic signaling

    Simple Ways to Measure Behavioral Responses of Drosophila to Stimuli and Use of These Methods to Characterize a Novel Mutant

    Get PDF
    The behavioral responses of adult Drosophila fruit flies to a variety of sensory stimuli – light, volatile and non-volatile chemicals, temperature, humidity, gravity, and sound - have been measured by others previously. Some of those assays are rather complex; a review of them is presented in the Discussion. Our objective here has been to find out how to measure the behavior of adult Drosophila fruit flies by methods that are inexpensive and easy to carry out. These new assays have now been used here to characterize a novel mutant that fails to be attracted or repelled by a variety of sensory stimuli even though it is motile
    corecore