41 research outputs found

    P.025 Efficacy and safety results of the avalglucosidase alfa phase 3 COMET trial in participants with late-onset Pompe disease (LOPD)

    Get PDF
    Background: Phase 3 COMET trial (NCT02782741) compares avalglucosidase alfa (n=51) with alglucosidase alfa (n=49) in treatment-naïve LOPD. Methods: Primary objective: determine avalglucosidase alfa effect on respiratory muscle function. Secondary/other objectives include: avalglucosidase alfa effect on functional endurance, inspiratory/expiratory muscle strength, lower/upper extremity muscle strength, motor function, health-related quality of life, safety. Results: At Week 49, change (LSmean±SE) from baseline in upright forced vital capacity %predicted was greater with avalglucosidase alfa (2.89%±0.88%) versus alglucosidase alfa (0.46%±0.93%)(absolute difference+2.43%). The primary objective, achieving statistical non-inferiority (p=0.0074), was met. Superiority testing was borderline significant (p=0.0626). Week 49 change from baseline in 6-minute walk test was 30.01-meters greater for avalglucosidase alfa (32.21±9.93m) versus alglucosidase alfa (2.19±10.40m). Positive results for avalglucosidase alfa were seen for all secondary/other efficacy endpoints. Treatment-emergent adverse events (AEs) occurred in 86.3% of avalglucosidase alfa-treated and 91.8% of alglucosidase alfa-treated participants. Five participants withdrew, 4 for AEs, all on alglucosidase alfa. Serious AEs occurred in 8 avalglucosidase alfa-treated and 12 alglucosidase alfa-treated participants. IgG antidrug antibody responses were similar in both. High titers and neutralizing antibodies were more common for alglucosidase alfa. Conclusions: Results demonstrate improvements in clinically meaningful outcome measures and a more favorable safety profile with avalglucosidase alfa versus alglucosidase alfa. Funding: Sanofi Genzym

    Living with myotonic dystrophy; what can be learned from couples? a qualitative study

    Get PDF
    Contains fulltext : 96062.pdf (publisher's version ) (Open Access)BACKGROUND: Myotonic dystrophy type 1 (MD1) is one of the most prevalent neuromuscular diseases, yet very little is known about how MD1 affects the lives of couples and how they themselves manage individually and together. To better match health care to their problems, concerns and needs, it is important to understand their perspective of living with this hereditary, systemic disease. METHODS: A qualitative study was carried out with a purposive sample of five middle-aged couples, including three men and two women with MD1 and their partners. Fifteen in-depth interviews with persons with MD1, with their partners and with both of them as a couple took place in the homes of the couples in two cities and three villages in the Netherlands in 2009. Results : People with MD1 associate this progressive, neuromuscular condition with decreasing abilities, describing physical, cognitive and psychosocial barriers to everyday activities and social participation. Partners highlighted the increasing care giving burden, giving directions and using reminders to compensate for the lack of initiative and avoidant behaviour due to MD1. Couples portrayed the dilemmas and frustrations of renegotiating roles and responsibilities; stressing the importance of achieving a balance between individual and shared activities. All participants experienced a lack of understanding from relatives, friends, and society, including health care, leading to withdrawal and isolation. Health care was perceived as fragmentary, with specialists focusing on specific aspects of the disease rather than seeking to understand the implications of the systemic disorder on daily life. CONCLUSIONS: Learning from these couples has resulted in recommendations that challenge the tendency to treat MD1 as a condition with primarily physical impairments. It is vital to listen to couples, to elicit the impact of MD1, as a multisystem disorder that influences every aspect of their life together. Couple management, supporting the self-management skills of both partners is proposed as a way of reducing the mismatch between health services and health needs

    Mapping of a gene for long QT syndrome to chromosome 4q25-27.

    No full text
    International audienceLong QT syndrome (LQTS) is a heterogeneous inherited disorder causing syncope and sudden death from ventricular arrhythmias. A first locus for this disorder was mapped to chromosome 11p15.5. However, locus heterogeneity has been demonstrated in several families, and two other loci have recently been located on chromosomes 7q35-36 and 3p21-24. We used linkage analysis to map the locus in a 65-member family in which LQTS was associated with more marked sinus bradycardia than usual, leading to sinus node dysfunction. Linkage to chromosome 11p15.5, 7q35-36, or 3p21-24 was excluded. Positive linkage was obtained for markers located on chromosome 4q25-27. A maximal LOD score of 7.05 was found for marker D4S402. The identification of a fourth locus for LQTS confirms its genetic heterogeneity. Locus 4q25-27 is associated with a peculiar phenotype within the LQTS entity

    Mapping of X-linked myxomatous valvular dystrophy to chromosome Xq28.

    Get PDF
    Myxoid heart disease is frequently encountered in the general population. It corresponds to an etiologically heterogeneous group of diseases, idiopathic mitral valve prolapse (IMVP) being the most common form. A rarely observed form of myxoid heart disease, X-linked myxomatous valvular dystrophy (XMVD), is inherited in an X-linked fashion and is characterized by multivalvular myxomatous degeneration; however, the histopathological features of the mitral valve do not differ significantly from the severe form of IMVP. In this article, we describe the genetic analysis of a large family in which XMVD is associated with a mild hemophilia A. The coagulation factor VIII gene position in Xq28 provided a starting point for the genetic study, which was conducted by use of polymorphic markers. Two-point linkage analysis confirmed this localization, and a maximum LOD score of 6.57 was found at straight theta=0 for two polymorphic microsatellite markers, INT-3 and DXS1008, the first one being intronic to the factor VIII gene. Haplotype analysis of this chromosomal region allowed the definition of an 8-cM minimal interval containing the gene for XMVD, between DXS8011 and Xqter

    Genetic testing and genetic counselling in hypertrophic cardiomyopathy: the French experience

    No full text
    Methods and results: The main questions asked by patients and relatives concern presymptomatic diagnosis and prenatal counselling/diagnosis, while clinicians sometimes discuss diagnostic and prognostic testing. To take into account the complex medical and psychological implications of this new approach, we developed a specific, multidisciplinary, and multiple step procedure, including a cardiologist, a geneticist, and a psychologist. Seventy subjects were examined, including (1) 29 adults for presymptomatic diagnosis (of whom 10 left the procedure after the first visit and 19 continued, among whom six had a mutation and two experienced negative psychological impact, observed during follow up), (2) nine couples of parents for presymptomatic diagnosis in their children (the procedure was stopped after the first visit in eight and continued in one), (3) 22 couples for prenatal counselling (no prenatal genetic testing was asked for after the first visit), and (4) 10 subjects for diagnostic testing. We decided to perform no prognostic testing. Conclusion: Our preliminary experience confirms the complexity of the situation and suggests the necessity for a specific procedure to ensure good practice in genetic testing of HCM

    Mise en evidence d'un cinquieme locus implique dans les cardiomyopathies hypertrophiques familiales. [Demonstration of a fifth locus implicated in familial hypertrophic cardiomyopathies]

    No full text
    Hypertrophic cardiomyopathy is familial in about 50% of cases and is transmitted in the autosomal dominant mode. The first morbid gene implicated in the disease was the gene coding the beta myosin heavy chain (beta MHC) on chromosome 14. However, only 30% of families have this genetic abnormality. Recently, three new loci have been identified on chromosomes 1q3, 11p13-q13 and 15q2. In order to determine whether other genes could be implicated in the disease a linkage analysis study was performed in a West Indian family. The method is based on the analysis of the distribution of the disease in the family and the microsatellite markers. The microsatellites used were those which recognised the 4 loci previously mentioned and 4 new markers situated and arranged with respect to known microsatellites. The results show that in the family studied, the disease did not concord with the markers of the beta MHC gene or with those recognising the loci on chromosomes 1q3, 11p13-q13 and 15q2. There is, therefore, a fifth gene implicated in familial HCM. The heterogeneity of the disease seems even greater than originally thought
    corecore