302 research outputs found

    Assessing the Risk of SARS-CoV-2 Transmission via Surgical Electrocautery Plume

    Get PDF
    This quality improvement study used a nonhuman subject research approach to examine whether SARS-CoV-2 from aerosolized virus is present in and potentially transmissible from a electrocautery plume in surgery

    Freshwater umbrella - the effects of nitrogen deposition & climate change on freshwaters in the UK

    Get PDF
    In upland areas of the UK located away from direct human disturbance through agriculture, industrial activities and urban pollution, atmospheric pollution poses one of the major threats to the chemical and biological quality of lakes and streams. One of the most important groups of pollutants is nitrogen (N) compounds, including oxidised forms of N called NOx, generated mainly by fossil fuel combustion especially in motor vehicles, and reduced forms of N (ammonia gas or dissolved ammonium compounds) generated mainly from agricultural activities and livestock. These nitrogen compounds may dissolve in rain or soilwater to form acids, or may be taken up as nutrients by plants and soil microbes in upland catchments, and then subsequently released in acid form associated with nitrate leaching at a later date. It is well established that nitrate leaching contributes to acidification of upland waters, with damage to aquatic ecosystems including plants, invertebrates and fish. However it has recently been suggested that nitrate leaching may also be associated with nutrient enrichment of upland waters that contain biological communities adapted to very low nutrient levels

    Ammonite stratigraphy of a Toarcian (Lower Jurassic) section on Nagy-Pisznice Hill (Gerecse Mts, Hungary)

    Get PDF
    Abstract In the Jurassic rocks exposed in a small abandoned quarry on the northwestern edge of Nagy-Pisznice Hill in the Gerecse Mts, fairly well preserved parts of a crocodile skeleton was found in 1996. The bed which yielded the skeletal remains is the uppermost layer of the Kisgerecse Marl Formation exposed here and was determined as belonging to the Upper Toarcian Grammoceras thouarsense Zone. The beds of the sequence above and below were carefully sampled in the late 1990s, and the encountered ammonites were evaluated biostratigraphically. As a result, the Lower Toarcian Harpoceras serpentinum Zone, the Middle Toarcian Hildoceras bifrons and Merlaites gradatus Zones, and the Upper Toarcian Grammoceras thouarsense and Geczyceras speciosum Zones were identified. Within most of these zones the subzones and even the faunal horizons were successfully recognized. The lowermost beds above the underlying Pliensbachian red limestone did not yield any fossils; thus the lowermost Toarcian Dactylioceras tenuicostatum Zone could not be documented. The highest Toarcian ammonite zones also remained unidentified, because the beds of the Tölgyhát Limestone above were not sampled all the way up. This paper presents the lithostratigraphic and biostratigraphic details of the sequence, and the paleontological descriptions of the most important ammonites

    Upper Toarcian (Lower Jurassic) marine gastropods from the Cleveland Basin, England: systematics, palaeobiogeography and contribution to biotic recovery from the early Toarcian extinction event

    Get PDF
    Here we describe a new upper Toarcian (Lower Jurassic) marine gastropod fauna from rocks of the Cleveland Basin exposed on the North Yorkshire coast of England. The fossil assemblage consists of 16 species, of which three are new: Katosira ? bicarinata sp. nov., Turritelloidea stepheni sp. nov. and Striactaenonina elegans sp. nov. Four species are described in open nomenclature as Tricarilda ? sp., Jurilda sp., Cylindrobullina sp. and Cossmannina sp. The other species have previously been described: Coelodiscus minutus (Schübler in Zieten), Procerithium quadrilineatum (Römer), Pseudokatosira undulata (Benz in von Zieten), Palaeorissoina aff. acuminata (Gründel), Pietteia unicarinata (Hudleston), Globularia cf. canina (Hudleston), Striactaeonina cf. richterorum Schulbert & Nützel, Striactaenonina aff. tenuistriata (Hudleston) and Sulcoactaeon sedgvici (Phillips). Most of these species are the earliest records of their respective genera and show palaeobiogeographical connections with contemporary gastropod associations from other regions of Europe and South America. The taxonomic composition of the upper Toarcian Cleveland Basin gastropod assemblage differs substantially from the faunas of the upper Pliensbachian and lower Toarcian Tenuicostatum Zone, showing the strong effect of the early Toarcian mass extinction event on the marine gastropod communities in the basin. Only a few gastropod species are shared between the late Toarcian faunas and the much more diverse Aalenian gastropod faunas in the Cleveland Basin, suggesting that there was a facies control on gastropod occurrences at that time. This is also a potential explanation for the taxonomic differences between the late Toarcian gastropod faunas in the Cleveland Basin and those in France, and northern and southern Germany

    Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption

    Get PDF
    Graphene quantum dots (GQDs) are an allotrope of carbon with a planar surface amenable to functionalization and nanoscale dimensions that confer photoluminescence. Collectively, these properties render GQDs an advantageous platform for nanobiotechnology applications, including optical biosensing and delivery. Towards this end, noncovalent functionalization offers a route to reversibly modify and preserve the pristine GQD substrate, however, a clear paradigm has yet to be realized. Herein, we demonstrate the feasibility of noncovalent polymer adsorption to GQD surfaces, with a specific focus on single-stranded DNA (ssDNA). We study how GQD oxidation level affects the propensity for polymer adsorption by synthesizing and characterizing four types of GQD substrates ranging ~60-fold in oxidation level, then investigating noncovalent polymer association to these substrates. Adsorption of ssDNA quenches intrinsic GQD fluorescence by 31.5% for low-oxidation GQDs and enables aqueous dispersion of otherwise insoluble no-oxidation GQDs. ssDNA-GQD complexation is confirmed by atomic force microscopy, by inducing ssDNA desorption, and with molecular dynamics simulations. ssDNA is determined to adsorb strongly to no-oxidation GQDs, weakly to low-oxidation GQDs, and not at all for heavily oxidized GQDs. Finally, we reveal the generality of the adsorption platform and assess how the GQD system is tunable by modifying polymer sequence and type.https://www.nature.com/articles/s41598-020-63769-
    corecore