71 research outputs found

    Probing clumpy stellar winds with a neutron star

    Full text link
    INTEGRAL, the European Space Agency's gamma-ray observatory, tripled the number of super-giant high-mass X-ray binaries (sgHMXB) known in the Galaxy by revealing absorbed and fast transient (SFXT) systems. In these sources, quantitative constraints on the wind clumping of the massive stars could be obtained from the study of the hard X-ray variability of the compact accreting object. Hard X-ray flares and quiescent emission of SFXT systems have been characterized and used to derive wind clump parameters. A large fraction of the hard X-ray emission is emitted in the form of flares with a typical duration of 3 ks, frequency of 7 days and luminosity of 1E36 erg/s. Such flares are most probably emitted by the interaction of a compact object orbiting at ~10 R* with wind clumps (1E(22-23) g) representing a large fraction of the stellar mass-loss rate. The density ratio between the clumps and the inter-clump medium is 1E(2-4) in SFXT systems. The parameters of the clumps and of the inter-clump medium, derived from the SFXT flaring behavior, are in good agreement with macro-clumping scenario and line driven instability simulations. SFXT have probably a larger orbital radius than classical sgHMXB.Comment: 8 page

    A search for near infrared counterparts of 3 pulsar wind nebulae

    Full text link
    While pulsar wind nebulae (PWNe) and their associated isolated pulsars are commonly detected at X-ray energies, they are much rarer at near infrared (nIR) and optical wavelengths. Here we examine three PWN systems in the Galactic plane - IGR J14003-6326, HESS J1632-478 and IGR J18490-0000 - in a bid to identify optical/nIR emission associated with either the extended PWNe or their previously detected X-ray point sources. We obtain optical/nIR images of the three fields with the ESO - New Technology Telescope and apply standard photometric and astrometric calibrations. We find no evidence of any extended emission associated with the PWNe in any of the fields; neither do we find any new counterparts to the X-ray point sources, except to confirm the magnitude of the previously identified counterpart candidate of IGR J18490-0000. Further observations are required to confirm the association of the nIR source to IGR J18490-0000 and to detect counterparts to IGR J14003-6326 and HESS J1632-478, while a more accurate X-ray position is required to reduce the probability of a chance superposition in the field of the latter.Comment: Accepted to A&A (4 pages, 1 figure

    INTEGRAL, XMM-Newton and ESO/NTT identification of AX J1749.1-2733: an obscured and probably distant Be/X-ray binary

    Full text link
    AX J1749.1-2733 is an unclassified transient X-ray source discovered during surveys by ASCA in 1993-1999. A multi-wavelength study in NIR, optical, X-rays and hard X-rays is undertaken in order to determine its nature. AX J1749.1-2733 is a new high-mass X-ray binary pulsar with an orbital period of 185.5+/-1.1 d (or 185.5/f with f=2,3 or 4) and a spin period of ~66 s, parameters typical of a Be/X-ray binary. The outbursts last ~12 d. A spin-down of 0.08+/-0.02 s/yr is also observed, very likely due to the propeller effect. The most accurate X-ray position is R.A. (2000) =17h49m06.8s and Dec. = -27deg32'32".5 (unc. 2"). The high-energy broad-band spectrum is well-fitted with an absorbed powerlaw and a high-energy cutoff with values NH=(20+/-1)e22 cm-2, Gamma=1.0+/-0.1, and Ecut=21+/-3 keV. The only optical/NIR candidate counterpart within the X-ray error circle has magnitudes of R=21.9+/-0.1, I=20.92+/-0.09, J=17.42+/-0.03, H=16.71+/-0.02, and Ks=15.75+/-0.07, which points towards a Be star located far away (> 8.5 kpc) and highly absorbed (NH~1.7e22 cm-2). The average 22-50 keV luminosity is (0.4-0.9)e36 erg/s during the long outbursts and 3e36 erg/s during the bright flare that occurred on MJD 52891 for an assumed distance of 8.5 kpc.Comment: accepted A&A, 11 pages, 9 figure

    The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations

    Full text link
    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+1816. The Swift/XRT data allow us to refine the position of the source to RA= 19h 29m 55.9s Dec=+18deg 18' 38.4" (+- 3.5"), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma ~ 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P=40%) pulsation at 12.43781 (+-0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+1816 being an HMXB with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18--40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (~2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implications of IGR J19294+1816 being an SFXT.Comment: 7 pages, 6 figures, accepted for publication in A&

    Probing Clumpy Stellar Winds in SFXTs

    Full text link
    Quantitative constraints on the wind clumping of massive stars can be obtained from the study of the hard X-ray variability of SFXTs. In these systems, a large fraction of the hard X-ray emission is emitted in the form of flares with typical duration of 3 ksec, frequency of 7 days and luminosity of 103610^{36} ergs/s. Such flares are most probably emitted by the interaction of a compact object orbiting at ∼10\sim10 R∗_* with wind clumps (1022−2310^{22-23} g). The density ratio between the clumps and the inter-clump medium is 102−410^{2-4} . The parameters of the clumps and of the inter-clump medium are in good agreement with macro-clumping scenario and line-driven instability simulations.Comment: 3 pages, A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environment

    HESS J1632-478: an energetic relic

    Get PDF
    HESS J1632-478 is an extended and still unidentified TeV source in the galactic plane. In order to identify the source of the very high energy emission and to constrain its spectral energy distribution, we used a deep observation of the field obtained with XMM-Newton together with data from Molonglo, Spitzer and Fermi to detect counterparts at other wavelengths. The flux density emitted by HESS J1632-478 peaks at very high energies and is more than 20 times weaker at all other wavelengths probed. The source spectrum features two large prominent bumps with the synchrotron emission peaking in the ultraviolet and the external inverse Compton emission peaking in the TeV. HESS J1632-478 is an energetic pulsar wind nebula with an age of the order of 10^4 years. Its bolometric (mostly GeV-TeV) luminosity reaches 10% of the current pulsar spin down power. The synchrotron nebula has a size of 1 pc and contains an unresolved point-like X-ray source, probably the pulsar with its wind termination shock.Comment: A&A accepted, 9 pages, 5 figures, 4 table

    Ratio of energies radiated in the universe through accretive processes and nucleosynthesis

    Full text link
    We present here a new determination of the ratio of energies radiated by active galactic nuclei and by stars and discuss the reasons for the apparently conflicting results found in previous studies. We conclude that the energy radiated by accretion processes onto super massive black holes is about 1 to 5% of the energy radiated by stars. We also estimate that the total mass accreted on average by a super massive black hole at the centre of a typical 10^11 Msol galaxy is of about 7 10^7 Msol.Comment: 6 pages, 2 figures, accepted by Astronomy & Astrophysic
    • …
    corecore