227 research outputs found

    The Universality of Communication: Preparing the Next Generation of Aviation Professionals

    Get PDF
    Current aviation college programs aim to prepare the next generation of aviation professionals to meet the needs of the ever-increasing global demand for air travel. Previous literature has identified gaps in competencies that employers noted in young graduates. This study attempts to narrow that gap by focusing on the curriculum of the top 20 aviation programs in the U.S. to compare the curriculum to the skills employers cited to assess whether the courses offered in the current programs reflect the actual needs of the aviation workplace. From a survey of Aerospace and Defense (A&D) employers, ten skills were cited: Team player, negotiation skills, verbal/written/oral communication skills, problem solving, decision making, assertiveness, proactivity, and self-motivation. The skills are not job-specific and are universal, but most often are associated with business studies programs. Nonetheless, four of the top five skills from the A&D employers survey were communication centered skills. In a content analysis of the courses offered at the top 20 U.S. aviation programs, the number of communication courses ranged from zero to 14, with an overall average of 4.7 classes within the program. Business management programs presented a range of one to 29 communication courses, with an average of 12.5 classes in the course catalogue. Despite rigorous training in job-specific competencies, there is a lack of business acumen in young aviation professional graduates. By enrolling in many of the current programs, the students risk entering the workplace today without the necessary business based communication skills sought by the global aviation industr

    Investigation of landslide failure mechanisms adjacent to lignite mining operations in North Bohemia (Czech Republic) through a limit equilibrium/finite element modelling approach

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Understanding the impact of data uncertainty is a fundamental part of ensuring safe design of manmade excavations. Although good levels of knowledge are achievable from field investigations and experience, a natural geological environment is subject to intrinsic variability that may compromise the correct prediction of the system response to the perturbations caused by mining, with direct consequences for the stability and safety of the operations. Different types of geoscientific evidence, including geological, geomorphic, geotechnical, geomatics, and geophysical data have been used to develop and perform two-dimensional Limit Equilibrium and Finite Element Method stability analyses of a lignite open-pit mine in North Bohemia (Czech Republic) affected by recent landslides. A deterministic-probabilistic approach was adopted to investigate the effect of uncertainty of the input parameters on model response. The key factors affecting the system response were identified by specific Limit Equilibrium sensitivity analyses and studied in further detail by Finite Element probabilistic analyses and the results were compared. The work highlights that complementary use of both approaches can be recommended for routine checks of model response and interpretation of the associated results. Such an approach allows a reduction of system uncertainty and provides an improved understanding of the landslides under study. Importantly, two separate failure mechanisms have been identified from the analyses performed and verified through comparisons with inclinometer data and field observations. The results confirm that the water table level and material input parameters have the greatest influence on the stability of the slope.This work was supported by the Research Fund for Coal and Steel of the European Union [grant number 752504]

    CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases

    Full text link
    © 2019 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society. Species occurrence records from online databases are an indispensable resource in ecological, biogeographical and palaeontological research. However, issues with data quality, especially incorrect geo-referencing or dating, can diminish their usefulness. Manual cleaning is time-consuming, error prone, difficult to reproduce and limited to known geographical areas and taxonomic groups, making it impractical for datasets with thousands or millions of records. Here, we present CoordinateCleaner, an r-package to scan datasets of species occurrence records for geo-referencing and dating imprecisions and data entry errors in a standardized and reproducible way. CoordinateCleaner is tailored to problems common in biological and palaeontological databases and can handle datasets with millions of records. The software includes (a) functions to flag potentially problematic coordinate records based on geographical gazetteers, (b) a global database of 9,691 geo-referenced biodiversity institutions to identify records that are likely from horticulture or captivity, (c) novel algorithms to identify datasets with rasterized data, conversion errors and strong decimal rounding and (d) spatio-temporal tests for fossils. We describe the individual functions available in CoordinateCleaner and demonstrate them on more than 90 million occurrences of flowering plants from the Global Biodiversity Information Facility (GBIF) and 19,000 fossil occurrences from the Palaeobiology Database (PBDB). We find that in GBIF more than 3.4 million records (3.7%) are potentially problematic and that 179 of the tested contributing datasets (18.5%) might be biased by rasterized coordinates. In PBDB, 1205 records (6.3%) are potentially problematic. All cleaning functions and the biodiversity institution database are open-source and available within the CoordinateCleaner r-package

    Exploring the potential of metabarcoding to disentangle macroinvertebrate community dynamics in intermittent streams

    Get PDF
    Taxonomic sufficiency represents the level of taxonomic detail needed to detect ecological patterns to a level that match the requirement of a study. Most bioassessments apply the taxonomic sufficiency concept and assign specimens to the family or genus level given time constraints and the difficulty to correctly identify species. This holds particularly true for stream invertebrates because small and morphologically similar larvae are hard to distinguish. Low taxonomic resolution may hinder detecting true community dynamics, which thus leads to incorrect inferences about community assembly processes. DNA metabarcoding is a new, affordable and cost-effective tool for the identification of multiple species from bulk samples of organisms. As it provides high taxonomic resolution, it can be used to compare results obtained from different identification levels. Measuring the effect of taxonomic resolution on the detection of community dynamics is especially interesting in extreme ecosystems like intermittent streams to test if species at intermittent sites are subsets of those from perennial sources or if independently recruiting taxa exist. Here we aimed to compare the performance of morphological identification and metabarcoding to detect macroinvertebrate community dynamics in the Trebbia River (Italy). Macroinvertebrates were collected from four perennial and two intermittent sites two months after flow resumption and before the next dry phase. The identification level ranged from family to haplotype. Metabarcoding and morphological identifications found similar alpha diversity patterns when looking at family and mixed taxonomic levels. Increasing taxonomic resolution with metabarcoding revealed a strong partitioning of beta diversity in nestedness and turnover components. At flow resumption, beta diversity at intermittent sites was dominated by nestedness when family-level information was employed, while turnover was evidenced as the most important component when using Operational Taxonomic Units (OTUs) or haplotypes. The increased taxonomic resolution with metabarcoding allowed us to detect species adapted to deal with intermittency, like the chironomid Cricotopus bicinctus and the ephemeropteran Cloeon dipterum. Our study thus shows that family and mixed taxonomic level are not sufficient to detect all aspects of macroinvertebrate community dynamics. High taxonomic resolution is especially important for intermittent streams where accurate information about species-specific habitat preference is needed to interpret diversity patterns induced by drying and the nestedness/ turnover components of beta diversity are of interest to understand community assembly processes

    Improving insect conservation management through insect monitoring and stakeholder involvement

    Get PDF
    In recent years, the decline of insect biodiversity and the imminent loss of provided ecosystem functions and services has received public attention and raised the demand for political action. The complex, multi-causal contributors to insect decline require a broad interdisciplinary and cross-sectoral approach that addresses ecological and social aspects to find sustainable solutions. The project Diversity of Insects in Nature protected Areas (DINA) assesses insect communities in 21 nature reserves in Germany, and considers interactions with plant diversity, pesticide exposure, spatial and climatic factors. The nature reserves border on agricultural land, to investigate impacts on insect diversity. Part of the project is to obtain scientific data from Malaise traps and their surroundings, while another part involves relevant stakeholders to identify opportunities and obstacles to insect diversity conservation. Our results indicate a positive association between insect richness and biomass. Insect richness was negatively related to the number of stationary pesticides (soil and vegetation), pesticides measured in ethanol, the amount of area in agricultural production, and precipitation. Our qualitative survey along with stakeholder interviews show that there is general support for insect conservation, while at the same time the stakeholders expressed the need for more information and data on insect biodiversity, as well as flexible policy options. We conclude that conservation management for insects in protected areas should consider a wider landscape. Local targets of conservation management will have to integrate different stakeholder perspectives. Scientifically informed stakeholder dialogues can mediate conflicts of interests, knowledge, and values to develop mutual conservation scenarios

    Early Arrival and Climatically-Linked Geographic Expansion of New World Monkeys from Tiny African Ancestors.

    Get PDF
    New World Monkeys (NWM) (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Herein, we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5-10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small-weighing 0.4 kg-and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of NWM and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Conceptual and empirical advances in Neotropical biodiversity research.

    Get PDF
    The unparalleled biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in recent years in our understanding of the origin and diversification of many Neotropical taxa and biotic regions, many questions remain to be answered. Additional biological and geological data are still needed, as well as methodological advances that are capable of bridging these research fields. In this review, aimed primarily at advanced students and early-career scientists, we introduce the concept of "trans-disciplinary biogeography," which refers to the integration of data from multiple areas of research in biology (e.g., community ecology, phylogeography, systematics, historical biogeography) and Earth and the physical sciences (e.g., geology, climatology, palaeontology), as a means to reconstruct the giant puzzle of Neotropical biodiversity and evolution in space and time. We caution against extrapolating results derived from the study of one or a few taxa to convey general scenarios of Neotropical evolution and landscape formation. We urge more coordination and integration of data and ideas among disciplines, transcending their traditional boundaries, as a basis for advancing tomorrow's ground-breaking research. Our review highlights the great opportunities for studying the Neotropical biota to understand the evolution of life

    Conceptual and empirical advances in Neotropical biodiversity research

    Get PDF
    The outstanding biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in the generation of biodiversity data, many questions remain to be answered. In this review, we first summarize some of the knowns and unknowns about Neotropical biodiversity, and discuss how human impact may have drastically affected some of the patterns observed today. We then link biodiversity to landscape, and outline major advances in biogeographical research. In particular, we argue that it is crucial to test the effect of landscape and climatic evolution to biotic diversification and distribution in order to achieve a comprehensive understanding of current patterns. In this context, it is also important to consider extant and extinct taxa, as well as to use probabilistic and parametric methods that explicitly include landscape evolution models. We subsequently explore different scales in Neotropical biogeography, focusing on the intersection between biogeography and community ecology, both of which often address similar questions from different angles. The concepts of community assembly, island biogeography, neutral processes, and ecological interactions are then discussed as important components of the complex processes that determine the patterns observed today. Single-taxon and cross-taxonomic studies are complementary and greatly needed, but achieving synthesis remains challenging. Finally, we argue that phylogenetic approaches hold great potential to connect across taxonomic, spatial and temporal scales, despite current difficulties to generate and cross-analyze large volumes of molecular data. We conclude by outlining major prospects and hindrances for further advancing our knowledge on the rich Neotropical biodiversity.</p
    corecore