515 research outputs found
Optical Studies of Metal- Semiconductor Transmutations Produced by Intercalation
Spectra of the alkali metal intercalation products of MoS2 and NbSc2 arc interpreted in terms of a previously published band model
Electron beam cooling in intense focussed laser pulses
In the coming years, a new generation of high-power laser facilities (such as the Extreme Light Infrastructure) will become operational, for which it is important to understand how the interaction with intense laser pulses affects the bulk properties of relativistic electron bunches. At such high field intensities, we expect both radiation reaction and quantum effects to have a dominant role to play in determining the dynamics. The reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction has been shown to occur equally in the longitudinal and transverse directions, whereas this symmetry is broken when the theory is extended to approximate certain quantum effects. The reduction in longitudinal cooling suggests that the effects of radiation reaction could be better observed in measurements of the transverse distribution, which for real-world laser pulses motivates the investigation of the angular dependence of the interaction. Using a stochastic single-photon emission model with a (Gaussian beam) focussed pulse, we find strong angular dependence of the stochastic heating
A Mach-Zehnder interferometric switch with a 0.2 Vmm voltage length product
We have developed a 2*2 Mach Zehnder interferometric switch employing laterally contacted hetero n-i-p-i quantum wells for providing refractive index changes. We observe switching over a 4 pi range with an on/off ratio of 17:1. A differential switching voltage as low as 0.2 V.mm is observed in the push-pull configuration. It is the objective of the present paper to reduce the switching voltage-length product of a Mach-Zehnder interferometric switch by exploiting the advantages of a hetero n-i-p-i quantum well structure for providing refractive index changes in the arms of a Mach Zehnder interferometer switc
Cooling of relativistic electron beams in intense laser pulses : chirps and radiation
Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra
Steady-State Cracks in Viscoelastic Lattice Models II
We present the analytic solution of the Mode III steady-state crack in a
square lattice with piecewise linear springs and Kelvin viscosity. We show how
the results simplify in the limit of large width. We relate our results to a
model where the continuum limit is taken only along the crack direction. We
present results for small velocity, and for large viscosity, and discuss the
structure of the critical bifurcation for small velocity. We compute the size
of the process zone wherein standard continuum elasticity theory breaks down.Comment: 17 pages, 3 figure
The angular dislocation in a half space
The solution for an angular dislocation allows one to construct the fields for any polygonal loop by superposition. The paper presents the displacements induced by the angular dislocation in an elastic half space. In view of potential applications in geophysics, particular attention is paid to the elastic fields at the free surface. The surface data are seen to exhibit a very simple dependence on the elastic constants. On peut construire les champs élastiques associés à une dislocation en polygone par superposition de solutions au problème d'une dislocation angulaire. Nous présentons les déplacements induits par une dislocation ingulaire dans un demi-éspace élastique. En vue des applications géophysiques, les champs élastiques sur la surface libre sont étudiés en particulier. Nous montrons que les champs élastiques sur la surface dépendent des constantes élastiques d'une facon très simple.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42683/1/10659_2004_Article_BF00126985.pd
Nonequilibrium brittle fracture propagation: Steady state, oscillations and intermittency
A minimal model is constructed for two-dimensional fracture propagation. The
heterogeneous process zone is presumed to suppress stress relaxation rate,
leading to non-quasistatic behavior. Using the Yoffe solution, I construct and
solve a dynamical equation for the tip stress. I discuss a generic tip velocity
response to local stress and find that noise-free propagation is either at
steady state or oscillatory, depending only on one material parameter. Noise
gives rise to intermittency and quasi-periodicity. The theory explains the
velocity oscillations and the complicated behavior seen in polymeric and
amorphous brittle materials. I suggest experimental verifications and new
connections between velocity measurements and material properties.Comment: To appear in Phys. Rev. Lett., 6 pages, self-contained TeX file, 3
postscript figures upon request from author at [email protected] or
[email protected], http://cnls-www.lanl.gov/homepages/rafi/rafindex.htm
Steady-State Cracks in Viscoelastic Lattice Models
We study the steady-state motion of mode III cracks propagating on a lattice
exhibiting viscoelastic dynamics. The introduction of a Kelvin viscosity
allows for a direct comparison between lattice results and continuum
treatments. Utilizing both numerical and analytical (Wiener-Hopf) techniques,
we explore this comparison as a function of the driving displacement
and the number of transverse sites . At any , the continuum theory misses
the lattice-trapping phenomenon; this is well-known, but the introduction of
introduces some new twists. More importantly, for large even at
large , the standard two-dimensional elastodynamics approach completely
misses the -dependent velocity selection, as this selection disappears
completely in the leading order naive continuum limit of the lattice problem.Comment: 27 pages, 8 figure
Calculations on the Size Effects of Raman Intensities of Silicon Quantum Dots
Raman intensities of Si quantum dots (QDs) with up to 11,489 atoms (about 7.6
nm in diameter) for different scattering configurations are calculated. First,
phonon modes in these QDs, including all vibration frequencies and vibration
amplitudes, are calculated directly from the lattice dynamic matrix by using a
microscopic valence force field model combined with the group theory. Then the
Raman intensities of these quantum dots are calculated by using a
bond-polarizability approximation. The size effects of the Raman intensity in
these QDs are discussed in detail based on these calculations. The calculations
are compared with the available experimental observation. We are expecting that
our calculations can further stimulate more experimental measurements.Comment: 21 pages, 7 figure
Oscillating Fracture in Rubber
We have found an oscillating instability of fast-running cracks in thin
rubber sheets. A well-defined transition from straight to oscillating cracks
occurs as the amount of biaxial strain increases. Measurements of the amplitude
and wavelength of the oscillation near the onset of this instability indicate
that the instability is a Hopf bifurcation
- …