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Cooling of relativistic electron beams in intense laser pulses: chirps and radiation

S. R. Yoffe∗, A. Noble, A. J. Macleod, D. A. Jaroszynski∗

SCAPA, Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK

Abstract

Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field
intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important
fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a
significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron
bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed
quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential
for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition
to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for
use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation
reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra.

Keywords: Radiation reaction, quantum effects, beam cooling, chirped laser pulse, radiation spectra, quasi-classical
model, stochastic model

1. Introduction

The next few years will see a new class of high-intensity
laser systems come online, such as the Extreme Light In-
frastructure (ELI) [1]. The field intensities available at
these facilities will far surpass those currently achievable
today, and will enable the investigation of physical phe-
nomena not currently accessible. In these regimes, both
quantum effects and radiation reaction will dominate the
dynamics of charged particles. It is therefore becoming in-
creasingly important to develop a theoretical understand-
ing of these fundamental topics in order to make reliable
predictions, but also aid the search for experimental sig-
natures.

Charged particles moving in an electromagnetic field ex-
perience the Lorentz force. However, as a charge acceler-
ates it radiates, losing energy and momentum. The self-
consistent inclusion of the effects of this emission in a par-
ticle’s dynamics, known as radiation reaction, remains a
contentious issue. In most current cases, the recoil on the
particle due to this radiation emission is negligible com-
pared to the applied forces and is safely neglected. This
has prevented experimental observation of radiation reac-
tion, in particular verification of the available theories.

The Lorentz–Abraham–Dirac (LAD) equation [2–4] is
the most natural classical description of radiation reac-
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tion; however, the presence of a third derivative of the po-
sition with respect to time leads to various pathologies [5].
There are a number of alternative classical descriptions [5]
which only contain (up to) second-order derivatives and
are thus not afflicted by these unphysical solutions, but
here we focus on one: the Landau–Lifshitz approach [6].
The governing equation is obtained by treating the radia-
tion reaction force as a perturbation to the Lorentz force,
and truncating at first order in the ‘characteristic time’
τ := q2/6πm (≃ 6× 10−24 s for an electron) to give

ẍa = − q

m
F abẋb − τ

q

m

(

Ḟ abẋb −
q

m
∆a

bF
bcFcdẋ

d
)

(1)

for a particle of charge q and massm in an electromagnetic
field described by the field tensor F . Indices are raised and
lowered with the metric tensor η = diag(−1, 1, 1, 1), and
repeated indices are summed from 0 to 3. An overdot
denotes differentiation with respect to proper time. The
ẋ-orthogonal projection ∆a

b := δab + ẋ
aẋb ensures that ẍ is

orthogonal to ẋ and the mass-shell condition is preserved
[7]. Note that Heaviside-Lorentz units are used with c = 1.
The Landau–Lifshitz equation (1) has found widespread

application, both analytically [8–10] and numerically in
PIC codes [11, 12]. Despite worries regarding its perturba-
tive nature, there is evidence to suggest that it is valid pro-
vided only that quantum effects can be neglected [13, 14].
However, in order to make predictions for experiments un-
der the extreme conditions expected at ELI, it is essential
to capture and describe the relevant quantum effects.
In an attempt to model weakly-quantum effects, we con-

sider a quasi-classical extension to the Landau–Lifshitz
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theory [15]. As quantum effects become more important,
classical theories overestimate the amount of radiation
emitted [16, 7] which is accounted for by a rescaling of the
characteristic time τ → τg(χ) in equation (1), where the

quantum nonlinearity parameter χ = eh̄
√

F abFacẋbẋc/m
2
e

and we use the approximation g(χ) = (1 + 12χ + 31χ2 +
3.7χ3)−4/9 [17]. The radiation reaction force is therefore
reduced as χ increases, compared to the purely classical
theory corresponding to g(χ) = 1 as χ→ 0.

Parameters obtainable at ELI are expected to approach
χ ∼ 0.8, at which point quantum effects can no longer be
considered to be weak, and it is unclear whether the quasi-
classical theory is at all applicable or if a fully-quantum
treatment is necessary [18, 19]. As such, we introduce
a stochastic model based on differential single-photon-
emission probabilities calculated from strong-field quan-
tum electrodynamics (QED) [20–22]. The particle propa-
gates according to the Lorentz force, and at each step the
probability of emitting a photon is evaluated and com-
pared to a random number in order to determine whether
or not emission occurs. If so, a photon energy is deter-
mined and the particle’s momentum updated accordingly.

Recently, an analytical solution to the Vlasov equation
was found for radiation reaction according to the Landau–
Lifshitz theory [16], and used to demonstrate how the in-
clusion of quantum effects using the quasi-classical model
causes the observed beam cooling to become anisotropic
[23]. A model for linearly-chirped laser pulses was used to
study electron beam cooling using the quasi-classical the-
ory for radiation reaction [7]. This present work builds on
both of these investigations, extending the analysis to cir-
cular polarisation and introducing a stochastic model for
single-photon emission before looking at the influence of
a linear frequency chirp on the measured radiation spec-
trum.

2. Quasi-classical beam cooling

In a plane wave, the only dependence on spacetime of
the electromagnetic field tensor F is through the phase
φ = −k · x = ωt−~k · ~x, where k = (ω,~k) is the (null) laser
wavevector. For an arbitrarily-polarised plane-wave laser,
the field tensor can be expressed

q

m
F a

b = aǫ(φ)
(

ǫakb − kaǫb
)

+ aλ(φ)
(

λakb − kaλb
)

, (2)

with ǫ, λ the mutually-orthogonal (transverse) polarisation
directions and ai(φ) dimensionless measures of the electric
field strength in the direction i ∈ {ǫ, λ}. We consider
ai(φ) = aenv(φ)ψi(φ), with the oscillation ψi(φ) modu-
lated by a sin2-envelope

aenv(φ) = a0 sin
2(πφ/L) for 0 < φ < L (3)

and zero otherwise, where L = 2πN is the “length” of a
pulse containingN cycles. For a representative wavelength
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Figure 1: (Colour online.) Predictions for the (a) final-state parti-
cle distribution and (b) evolution of the relative momentum spread
using the classical (dashed) and quasi-classical (solid) theories. The
increase in intensity (reduction in N) reduces the amount of quasi-
classical beam cooling observed.

of λ = 800 nm, this corresponds to a pulse with full-width
half-maximum (FWHM) duration T = Nλ/2c = 1.33N fs.
In the following, the initial electron bunch is taken to be

Gaussian-distributed with a 20% spread around a central
Lorentz γ-factor of γ0 = 2000, corresponding to an energy
of around 1 GeV. This bunch collides head on with a coun-
terpropagating laser pulse. Our exact numerical methods
are described in detail elsewhere [16, 7].

2.1. Linear polarisation

For a plane-wave laser, linearly polarised in the ǫ-
direction, we have the oscillating functions ψǫ(φ) = sin(φ)
and ψλ(φ) = 0. Figure 1 shows the interaction of the ini-
tial Gaussian beam with pulses ranging from N = 5 to
200 cycles. Since the final-state predictions of the clas-
sical Landau–Lifshitz theory only depend on the fluence

of the pulse [24], E ∝ Na20, we choose a0 such that we
maintain Na20 = 9248 (corresponding to a peak intensity
I = 2 × 1021 W/cm2 for λ = 800 nm and T = 27 fs)
and the classical final-state properties all agree. This can
be seen explicitly in Fig. 1(b) for the relative momentum
spread, σ̂ = σ/p̄, where σ is the standard deviation and p̄
is the mean momentum. Although the measurement does
not agree during the evolution due to differences in the en-
ergy distribution caused by the differing numbers of cycles,
after the pulses have passed the predictions coincide. The
final-state particle distribution can be seen in Fig. 1(a)

2



0.0

0.2

0.4

0.6

0.8

1.0

E
le

ct
ro

n
e
n

e
rg

y
(G

e
V

)

(a)

Classical

Circular

Linear

Quasi-classical

Circular

Linear

0 L/4 L/2 3L/4 L

Phase, φ

0.0

0.1

0.2

0.3

0.4

0.5

N
o
n

li
n

e
a
ri

ty
p

a
ra

m
e
te

r,
χ

(b)

Figure 2: (Colour online.) Evolution of the (a) electron energy
and (b) nonlinearity parameter predicted by the classical and quasi-
classical theories, for both linear and circular polarisation. The
quasi-classical theory predicts higher values of χ and, unlike the clas-
sical case, a dependence of the final energy on the polarisation.

to become more tightly distributed around a lower mean
momentum compared to the initial Gaussian distribution
(the beam has cooled and lost energy) but again the result
is identical provided the fluence is kept constant.

By contrast, the quasi-classical predictions are sensitive
to the intensity directly [16]. As the intensity is increased,
χ experienced by the electrons increases, which in turn
acts to suppress radiation reaction. As such, we observe
less energy loss and less cooling of the electron beam. The
cooling is also found to become anisotropic [23, 16].

2.2. Circular polarisation

Since the quasi-classical predictions depend on the dis-
tribution of energy within the pulse, we can consider the
effect of instead using a circularly-polarised laser. In this
case, the magnitude of the field experienced by the elec-
tron does not oscillate as in the linear case, but rather a
much smoother profile is encountered. As such, the peak

intensity observed is half that for the linear case. (They
have the same cycle-averaged intensity, and the same flu-
ence.) The transverse components of the field oscillate
with ψǫ(φ) = sin(φ)/

√
2 and ψλ(φ) = cos(φ)/

√
2.

The predictions made by the classical and quasi-classical
theories are shown in Fig. 2 for N = 20 cycles and a0 =
100, corresponding to peak intensities Ilin = 4.28 × 1022

and Icirc = 2.14 × 1022 W/cm2. Once again, because
the fluence contained by the two pulses is unchanged, the
classical theory predicts identical final-state properties in
Fig. 2(a). By contrast, the difference in the nonlinear-
ity parameter experienced by the electron, as shown in
Fig. 2(b), leads to a small difference in the final-state
quasi-classical predictions in Fig. 2(a).

In both Figs. 2(a) and 2(b), during the evolution the
response to the circularly-polarised pulse is observed to
vary smoothly and not display fluctuations on the scale of
the wavelength like the linearly-polarised pulse.

3. Stochastic photon emission

3.1. Comparison of stochastic and quasi-classical models

The photon emission model discussed at the end of sec-
tion 1 explicitly captures the stochastic nature of pho-
ton emission, and as such should remain valid beyond the
quasi-classical theory. It can therefore be used to gauge
the performance of the quasi-classical theory as the quan-
tum nonlinearity parameter increases. This is useful, since
obtaining quasi-classical predictions requires significantly

less computing power. This is in part due to the fact that
a large ensemble is required to extract average predictions
from the stochastic theory.

Figure 3(a) shows the evolution of the energy for a sin-
gle electron with initial γ0 = 2000 colliding with a 10-
cycle, circularly-polarised pulse with a0 = 100 according
to the classical and quasi-classical theories. An ensem-
ble of 15000 identical electrons was propagated using the
stochastic theory, of which the trajectory of one (random)
particle is also plotted. The trajectory exhibits discontin-
uous jumps of various sizes as the electron emits photons
of different energies. However, the average trajectory of
all electrons in the ensemble shows remarkable agreement
with the quasi-classical prediction, despite the value of the
nonlinearity parameter χ > 0.5 shown in Fig. 3(b), far be-
yond the expected region of validity for the quasi-classical
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Figure 3: (Colour online.) Comparison of the (a) electron energy
and (b) nonlinearity parameter in the classical, quasi-classical, and
stochastic theories. The stochastic trajectory in (a) shows discon-
tinuous drops in energy, while the classical theory overestimates the
energy lost by the electron. The ensemble-averaged stochastic pre-
dictions agree well with the quasi-classical theory.
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Figure 4: (Colour online.) The (a) emitted photon spectrum and
(b) average emitted photon energy as a function of emission position
within the pulse. The dashed curve in (b) gives the total energy
radiated at each position, which is used to calculate the positively-
skewed average photon energy (thick solid line).

theory, χ2 ≪ 1. This unexpected result could potentially
save large amounts of computation.

3.2. Radiation spectra

An immediate consequence of the stochastic model is
that one has direct access to the spectrum of the radiation
emitted by an electron as it navigates the laser pulse. Our
ensemble of 15000 electrons produced 299412 photons of
various energies (assumed to be perfectly backscattered),
from which we generate the graph shown in Fig. 4(a). The
spectrum is compatible with a 2γ2 ≃ 107 upshift of the
laser fundamental frequency, ω0. We also know where each
emission happened, allowing the photon number and total
emitted energy to be found as a function of the location
(phase) within the pulse in Fig. 4(b). The average emit-
ted photon energy (as a function of the emission phase)
can then be extracted. We note that the photon number
is essentially proportional to the (symmetric) sin2(πφ/L)
intensity envelope (3), while photons radiated towards the
beginning of the interaction have higher average energy
than those emitted towards the middle or end, with a peak
around 70 MeV at φ ≃ L/4 (earlier than the peak in χ at
φ ≃ L/3 from Fig. 3(b)). This is because the emitted pho-
ton energy depends in part on the electron energy, which
is decreasing with every emission.

3.3. Chirped laser pulses

One of the methods used to reach ultra-high intensities
is chirped pulse amplification (CPA). As such, the result-

ing laser pulses with which many experiments will be car-
ried out may contain a frequency chirp. Moreover, there
are often practical benefits to deliberately introducing a
frequency chirp [25–27]. Their impact on beam dynamics
and emitted radiation is therefore directly relevant for fu-
ture high-intensity experiments. The influence of chirped
pulses on beam dynamics has been previously investigated
using linearly-polarised pulses [7], and an intuitive expla-
nation was provided for the observed effect. Here, we use
the stochastic quantum model and investigate the changes
to the emitted radiation spectrum.

There have been several recent investigations in which a
linear frequency chirp is defined [25–28], including an inter-
esting study on the radiation spectra predicted by the clas-
sical Landau–Lifshitz theory [27] where they found that
negative chirps led to an increased rate of electron energy
loss and a stronger peak in the spectrum, as well as an in-
crease in the radiated frequencies. We follow the chirping
formulation presented in Reference [7], in which the num-
ber of cycles contained by the pulse is kept the same such
that the chirped length becomes L∆ = 2πN/(1+∆/2) for
the chirp rate ∆. The linearly-chirped phase is

η(φ; ∆) = φ(1 + φ∆/2L∆), (4)

and the dimensionless fields are written

ai(φ; ∆) = Aenv(φ; ∆)Ψi(φ; ∆), (5)

where the oscillation functions and envelope are given by

Ψi(φ; ∆) = ψi(η(φ; ∆)) and (6)

Aenv(φ; ∆) = aenv(φ)
√

1 + ∆/2, (7)

respectively, for 0 < φ < L∆ (otherwise zero). The factor
√

1 + ∆/2 is included to ensure that the chirped pulses all
contain the same fluence.

In a similar manner to Fig. 4, Fig. 5(a) shows the spec-
trum and Fig. 5(b) the average emitted photon energy
as a function of emission phase within the pulse, plotted
for (large) chirps ∆ = ±0.5, along with the unchirped
pulse (∆ = 0). Statistics were obtained from 352065
(263031) photons for the negative (positive) chirp. Fig-
ure 5(a) shows that the average emitted photon number
does increase (decrease) for the negative (positive) chirp,
but Fig. 5(b) shows a corresponding drop (rise) in the av-
erage photon energy. Together, these do not necessarily
correspond to increased energy emitted with the negative
chirp. The dashed line therefore shows the cumulative
energy radiated as the electron moves through the pulse,
confirming that the negative chirp does cause an increase
in radiation, despite the lower average photon energy. It
is also interesting to note that, according to the stochastic
theory, the chirp rate does not affect the spectral cut-off,
unlike the classical case [27]. In fact, a slight decrease in
the peak frequency is observed for the negative chirp.
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4. Conclusions

The availability of high-powered lasers in the next few
years will drive experimental physics into unchartered wa-
ters previously inaccessible, where quantum effects will
have a dominant role. It is crucial to develop an under-
standing of the fundamental processes involved in order to
both make predictions and guide experiment design, but
also explain experimental findings.

In this paper, we have investigated the importance of
quantum effects in predictions of radiation reaction in
the interaction between a high-intensity laser pulse and
a highly-relativistic electron beam. Beam cooling is ob-
served to be reduced in quasi-classical predictions as quan-
tum effects become important, leading to a direct depen-
dence on the laser intensity profile. This has been modified
using linear and circular polarisation, resulting in a small
effect, and the introduction of a linear frequency chirp.

A stochastic model based on single photon emission has
been compared to quasi-classical predictions with excellent
agreement for χ ≃ 0.5, provided an ensemble of electrons is
used. A negative chirp is found to increase the electron en-
ergy loss and cause increased photon emission, albeit with
a reduced average emitted photon energy. Unlike classical
predictions [27], the stochastic model does not produce a
significant change in the maximum radiated frequency.
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Figure 5: (Colour online.) The (a) emitted radiation spectra and
(b) average emitted photon energy, with positively- and negatively-
chirped pulses. The thick (thin) curves are for the negative (positive)
chirp. The dashed curves in (b) are the cumulative energy radiated.
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