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Electron beam cooling in intense focussed laser pulses

Samuel R. Yoffe, Adam Noble, Alexander J. Macleod, and Dino A. Jaroszynski

Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK

ABSTRACT

In the coming years, a new generation of high-power laser facilities (such as the Extreme Light Infrastructure)
will become operational, for which it is important to understand how the interaction with intense laser pulses
affects the bulk properties of relativistic electron bunches. At such high field intensities, we expect both radiation
reaction and quantum effects to have a dominant role to play in determining the dynamics. The reduction in
relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of
radiation reaction has been shown to occur equally in the longitudinal and transverse directions, whereas this
symmetry is broken when the theory is extended to approximate certain quantum effects. The reduction in
longitudinal cooling suggests that the effects of radiation reaction could be better observed in measurements of
the transverse distribution, which for real-world laser pulses motivates the investigation of the angular dependence
of the interaction. Using a stochastic single-photon emission model with a (Gaussian beam) focussed pulse, we
find strong angular dependence of the stochastic heating.

Keywords: Radiation reaction, quantum effects, semi-classical model, beam cooling, stochastic photon emission,
interaction angle, focussed laser pulses.

1. INTRODUCTION

The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure
(ELI)1) become operational, delivering laser intensities well beyond those currently available. The extremely large
fields generated by these pulses will allow new physical regimes, currently merely a playground for theorists, to be
explored experimentally for the first time. In these regimes, it is expected that radiation reaction and quantum
effects will not just be important, but will in fact dominate the dynamics.

It is well established that the motion of a moving charged particle can be described by the Lorentz force for
a particle of mass m and charge q in an electromagnetic field F ,

ẍa =
q

m
F abẋb or

d~p

dt
= q

(

~E +
~p

γm
× ~B

)

, (1)

where a dot represents differentiation with respect to proper time, s. However, an accelerating charge radiates
energy (and momentum), and as it does it recoils in order to conserve energy and momentum, altering the
particle’s trajectory. This is the concept of radiation reaction and it is unaccounted for in the Lorentz equation
above. In many cases, this effect is extremely small and can be safely neglected, however as we move to higher
field stengths this is no longer the case.

Despite more than a century of investigation, radiation reaction remains a contentious area of physics. Perhaps
the most rigorous classical description of radiation reaction for a point particle is that by Dirac,2 which was
based on earlier (independent) attempts to include the effects of radiation emission by Lorentz3 and Abraham.4

Unusually, the resulting Lorentz–Abraham–Dirac (LAD) equation contains a third derivative (with respect to
time) which permits so-called runaway solutions. These pathological solutions, for which a particle accelerates
indefinitely without the action of a force, are unphysical and can be prevented only at the expense of violating
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causality. In this case, the particle may experience pre-acceleration and respond to a future force which has not
yet acted on the particle. The recent review5 describes these problems and proposed solutions in greater detail.

To avoid the pathologies found with the LAD equation, the most widely-used classical description was intro-
duced by Landau and Lifshitz.6 The radiation reaction (self-)force is treated as a small perturbation about the
Lorentz force,7 and terms are collected up to leading-order in the characteristic time, τ := q2/6πm, to give what
is known as the Landau–Lifshitz equation:

ẍa = −
q

m
F abẋb − τ

q

m

(

∂cF
abẋbẋ

c −
q

m
∆a

bF
bcFcdẋ

d
)

, (2)

where the ẋ-orthogonal projection ∆a
b := δab + ẋaẋb ensures that p

apa = −m2 (where pa = (γm, ~p)) is preserved
so that the particle remains on shell. This classical equation has found significant use and there is mounting
evidence to suggest that the theory is valid provided that quantum effects may be ignored.8,9 However, this will
certainly not be the case at the extreme conditions expected at ELI, and in order to connect with experiment
design we must attempt to describe some of these effects.

Quantum effects are typically considered to be negligible if the electric field observed by the particle Ê = γE
is much less than the Sauter-Schwinger critical field10,11 typical of QED processes, ES = 1.32 × 1018 V/m. In
this case, the quantum nonlinearity parameter is small,

χ :=
Ê

ES
=

e~

m2
e

√

F abFacẋbẋc ≪ 1, (3)

where ẍa
0 = F abẋb is the acceleration due to the Lorentz force only. ELI is expected to approach χ ∼ 0.8, where

quantum effects will play an important part.

One issue with using the classical model when χ becomes large is that the theory considers radiation at all
frequencies. Classically, there is nothing to prevent a particle radiating a small amount of energy at a high
frequency, whereas in the quantum world an entire photon has to be emitted. This limits the available emission
spectrum, since the particle can never radiate more energy than it actually has, such that classical theories
overestimate radiation emission as quantum effects become important.12 Provided parameters are used such
that χ2 ≪ 1 and the system is in some sense weakly quantum, then a semi-classical modification to (2) could
be made13 and the emission reduced by scaling the radiation reaction force with a decreasing function of the
quantum nonlinearity parameter,14 g(χ). The full expression involves a non-trivial integral over Bessel functions,
so instead we use the approximation introduced by Thomas et al.15∗

g (χ) =
(

1 + 12χ+ 31χ2 + 3.7χ3
)−4/9

. (4)

Predictions using this semi-classical model can be compared to those obtained from the classical Landau–Lifshitz
theory in order to explore the role of quantum effects in the weakly quantum regime which will be available at
ELI.

In this paper, we focus on the reduction of beam cooling predicted by the semi-classical model18 and the
observation of a loss of symmetry, which motivates investigation of the interaction angle of a bunch colliding
with a focussed laser pulse.

2. PARTICLE DISTRIBUTION FUNCTION AND PHASE SPACE CONTRACTION

The evolution of a particle distribution F (x, u) can be described by the Vlasov equation,

d

ds
(FV) =

[

dF

ds
+ βsF

]

V = 0, (5)

where V is the phase-space volume element, βs(x, u) describes the rate of change of V with proper time, and

ua = (γ, ~u) is the 4-velocity. We introduce the (null) wavevector ka = (ω,~k) and work with the phase η =

∗Note that other approximations are available, such as16,17 g(χ) = (1 + 18χ+ 69χ2 + 73χ3 + 5.806χ4)−1/3.



−k · x = ωt−~k · ~x and Cartesian spatial coordinates (ξ, σ, ζ), along with the corresponding velocity components
uη, uξ and uσ. The final component is not independent, and can be found from the normalisation condition
uaua = (uη/ω)(2uζ − uη/ω) + u2

ξ + u2
σ = −1.

For a plane wave with arbitrary polarisation, the electromagnetic field tensor F depends on spacetime only
through the phase η and can be written

q

m
F a

b = Eǫ(η)
(

ǫakb − kaǫb
)

+ Eλ(η)
(

λakb − kaλb

)

, (6)

where ǫ, λ are the (transverse) polarisation vectors and the functions Eǫ,λ(η) are dimensionless measures of the
electric field strength. Similarly, we assume that the particle distribution also depends on spacetime only through
the phase, such that F = F (η, uη, uξ, uσ) and the Vlasov equation becomes

uη
∂F

∂η
+AI ∂F

∂uI
+ uη

∂

∂uI

(

AI

uη

)

F = 0, (7)

where uI ∈ {uη, uξ, uσ} and the accelerations AI ∈ {Aη,Aξ,Aσ} follow from the single-particle equations of
motion. After division by uη > 0, the equation is expressed

dF

dη
+ βF = 0, where β =

∂

∂uI

(

AI

uη

)

. (8)

It is the quantity β which is responsible for any expansion (β > 0, heating) or contraction (β < 0, cooling) of
the distribution (and the associated change in entropy19).

For the interaction of a highly relativistic particle bunch with an intense laser pulse, it is primarily the
dependence of F on η and uη which is of interest. We therefore integrate out the transverse degrees of freedom18

and define the longitudinal distribution,

f(η, uη) =

∫

R2

F duξduσ, (9)

which satisfies the reduced Vlasov equation

df

dη
+ β‖f = 0, where β‖ =

∂

∂uη

(

Aη

uη

)

. (10)

The quantity β‖ describes the longitudinal phase space contraction, such that the transverse may be found as

β⊥ = β − β‖ =
∂

∂uξ

(

Aξ

uη

)

+
∂

∂uσ

(

Aσ

uη

)

. (11)

To gain any further information, we must make a choice of single-particle equations of the motion to use. We
begin by considering the Landau–Lifshitz equations (indicated by Â) which in our coordinates may be written:

Âη = −τE2u3
η

Âξ = −uη

(

Eǫ + τuηE
′
ǫ

)

− τE2u2
ηuξ (12)

Âσ = −uη

(

Eλ + τuηE
′
λ

)

− τE2u2
ηuσ,

where E2 = E2
ǫ +E2

λ and prime denotes differentiation with respect to η. For the classical Landau–Lifshitz theory
we therefore find

β̂‖ = β̂⊥ = −2τE2uη ≤ 0. (13)

Since this is negative (semi-definite), any change to the distribution as the particles evolve must correspond to
a cooling — a reduction in the relative energy/momentum spread of the particles. Moreover, we see that equal
cooling occurs in the longitudinal and transverse directions.
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Figure 1. (Colour online.) Part (a): transverse and longitudinal beam cooling for the semi-classical model compared to
that for the classical Landau–Lifshitz prediction. Part (b): comparison of longitudinal and transverse beam cooling for
the semi-classical model as the system becomes more quantum.

Let us now extend the classical theory for use in the weakly quantum regime and consider the equations of
motion for the semi-classical model. This amounts to a rescaling τ → τg(χ) in equations (12), specifically

Aη = −τg(χ)E2u3
η

Aξ = −uη

(

Eǫ + τg(χ)uηE
′
ǫ

)

− τg(χ)E2u2
ηuξ (14)

Aσ = −uη

(

Eλ + τg(χ)uηE
′
λ

)

− τg(χ)E2u2
ηuσ.

Since in the plane wave we have χ = χ(η, uη) = 3τEuη/2α (where α is the fine structure constant) the transverse
contraction β⊥ is simply scaled by g(χ); whereas, the longitudinal component picks up an additional contribution
due to the derivative of g(χ):

β⊥ = gβ̂⊥ and β‖ = gβ̂‖ +
∂g

∂uη

Âη

uη
. (15)

Using the approximation for g(χ) given by (4), we find

∂g

∂uη

Âη

uη
= −β⊥

[

2

9
χg9/4(χ)

(

12 + 62χ+ 11.1χ2
)

]

≥ 0, (16)

which corresponds to heating. Thus, as the system becomes more strongly quantum, there is a general reduction
to beam cooling due to g(χ) < 1; but there is also an additional reduction to the longitudinal cooling which
breaks the symmetry between the longitudinal and transverse contributions.

Figure 1 shows the relative variation of the longitudinal and transverse phase space contraction as quan-
tum effects become more and more important. As χ increases, not only does the semi-classical model predict
substantially less beam cooling than the Landau–Lifshitz theory (a) but the anisotropy of the cooling increases
(b).

This reduction in longitudinal — by which we mean parallel to the laser propagation direction — beam
cooling could be used to help inform experiments looking to measure the effects of radiation reaction. Varying
the interaction angle of the incoming electron bunch and laser pulse, rather than having them meet head on,
could help maximise any cooling signiture present in the final state. In order to investigate this, we must first
address two limitations of the work so far: the plane wave approximation; and stochastic heating introduced
when continuous classical emission is no longer applicable.

3. FOCUSSED LASER PULSES AND STOCHASTIC HEATING

While a useful tool for analytical studies, the plane wave approximation is rarely useful for comparison to
experiment due to the strong focussing required to obtain high laser intensity. In addition, the concept of



Figure 2. (Colour online.) Gaussian laser beam with waist w0 = 1 µm (propagating in −ζ direction) before (left), during
(centre) and after (right) the interaction with an electron bunch (moving in +ζ direction).

changing the interaction angle with a plane wave is not very intuitive. To overcome this, we instead consider the
field tensor to have full spacetime dependence and write

q

m
F ab = (∂aΦ)

(

µb + kb/ω
)

− (∂bΦ) (µa + ka/ω) + (∂aaǫ)ǫ
b − (∂baǫ)ǫ

a + (∂aaλ)λ
b − (∂baλ)λ

a, (17)

where Φ is the scalar potential which is found using the Lorenz gauge condition (using a procedure similar to
Harvey et al.20) ∂bA

b = 0 with the vector potential Ab = (Φ, aǫ, aλ, 0). For the following, we consider the
circularly-polarised Gaussian laser beam described by

aǫ − iaλ = a0
w0

w(ζ)
sin2

( η

2N

)

exp

[

−
ξ2 + σ2

w2(ζ)

]

exp i

[

η +

(

ζ − ζf
zR

)(

ξ2 + σ2

w2(ζ)

)

− tan−1

(

ζ − ζf
zR

)]

, (18)

where a0 is a dimensionless measure of the peak laser intensity, N is the number of cycles, zR = πw2
0/λ0 is the

Rayleigh length for a laser with wavelength λ0, and the waist is given by w(ζ) = w0

√

1 + [(ζ − ζf ) /zR]
2
with

w0 the radius at the position of the focus, ζf . This is illustrated in Figure 2 for ζf = 0.

In addition to using a focussed laser pulse in place of the plane wave, we move to a stochastic model for single
photon emission based on the probability of photon emission derived from QED.12,21,22 Starting from a large
ensemble of initially-identical electrons (i.e. zero momentum spread), the random nature of the photon emission
will cause the final properties to vary, depending on when and how much energy the electrons radiate. The final
distribution is therefore expected to experience what is referred to as stochastic heating.

In order to look at the strength of the stochastic heating and its dependence on interaction angle, we consider
an ensemble of 1000 relativistic electrons with initial Lorentz factor γ0 = 500 colliding with a 10-cycle (27
fs) laser pulse with peak intensity I = 8.6 × 1022 W/cm2 and focussed waist w0 = 2.5 µm at initial angle
θi ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}. A selection of example trajectories are shown in Figure 3 for four different θi.
We see that, for θi = 0◦, it is common to have the electrons deflected into positive and negative angles, or even
turned around completely, but as we move through to 60◦ and beyond we favour increased angle.

The final properties of all of the electrons are then compiled to produce Figure 4. The deviation angle
∆θ = θf − θi is plotted against final Lorentz factor γf for each electron. Electrons that collide head on radiate
most strongly, and emerge with an average γ̄ = 71 substantially lower than they started with. There is also
no preference to scatter into ∆θ > 0 or ∆θ < 0, although most end up with −90◦ < ∆θ < 90◦. We also see
that, despite starting with zero energy spread, stochastic heating has caused a relative spread σ̂ = σ/γ̄ ≃ 25%
to develop.

As the initial angle is increased, the electrons tend to lose less energy and end up with larger γ̄. As well as
a clustering around smaller ∆θ, there is also a clear preference for scattering into ∆θ > 0. This is due to the
relative direction of laser propagation, as the electrons tend to be ‘dragged’ round by the laser. (Note that θi < 0
leads to ∆θ < 0 dominating.)

Finally, it is interesting to note that the maximum stochastic heating does not occur for electrons colliding
head on, despite the maximal loss of energy. Instead, maximal heating is observed for around θi ≃ 60◦.
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Figure 3. (Colour online.) Example trajectories for electrons with initial γ0 = 500 colliding with a circularly-polarised
laser with intensity a0 = 200 (I = 8.6× 1022 W/cm2) at initial angle (top left) 0◦; (top right) 30◦; (bottom left) 60◦; and
(bottom right) 90◦. Dashed line indicates motion in a straight line, while grey shows the path of an electron follwing just
the Lorentz force.
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Figure 4. (Colour online.) Final electrons: Comparison of deviation angle ∆θ = θf − θi and final energy γf .

4. CONCLUSIONS

With new, high-power laser facilities due to come online over the next few years, it is important to develop our
understanding of the fundamental processes that underlie physics at unprecedented field strengths, and design
experiments to measure effects that have until now been out of reach. At such facilities, not only will radiation
reaction and quantum effects dominate the dynamics, requiring quantum models and rendering predictions
made by classical theories unreliable, but it will also be increasingly important to move away from the plane
wave approximation and instead turn our attention to more realistic finite pulses.

In this paper, we have demonstrated that the classical Landau–Lifshitz equations lead to a cooling of a
relativistic electron beam when it collides with a high intensity laser pulse, and that this cooling is split equally
between the longitudinal and transverse directions. However, in addition to reducing the overall beam cooling,
the semi-classical model introduces a heating term to the longitudinal distribution which leads to an anisotropy
in the cooling. This imbalance in the cooling of the longitudinal and transverse distributions suggests that
experiments may find a particular interaction geometry beneficial for measuring maximum signal.

Using a stochastic single-photon emission model, the interaction of initially-identical electron ensembles
colliding with a focussed pulse represented by a Gaussian beam demonstrated stochastic heating sensitive to the
interaction angle, and a bias for final deviation (or scattering) angle. Whether this stochastic heating can in any
way be compared to the heating contribution found for the semi-classical model is of interest for the application
of efficient deterministic models when the system is no longer weakly quantum, and will be addressed in future
work.
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