6,196 research outputs found

    Crystallographic investigation into the self-assembly, guest binding, and flexibility of urea functionalised metal-organic frameworks

    Get PDF
    Introduction of hydrogen bond functionality into metal-organic frameworks can enhance guest binding and activation, but a combination of linker flexibility and interligand hydrogen bonding often results in the generation of unwanted structures where the functionality is masked. Herein, we describe the self-assembly of three materials, where Cd2+, Ca2+, and Zn2+ are linked by N,Nʹ-bis(4-carboxyphenyl)urea, and examine the effect of the urea units on structure formation, the generation of unusual secondary building units, structural flexibility, and guest binding. The flexibility of the Zn MOF is probed through single-crystal to single-crystal transformations upon exchange of DMF guests for CS2, showing that the lability of the [Zn4O(RCO2)6] cluster towards solvation enables the urea linkers to adopt distorted conformations as the MOF breathes, even facilitating rotation from the trans/trans to the trans/cis conformation without compromising the overall topology. The results have significant implications in the mechanistic understanding of the hydrolytic stability of MOFs, and in preparing heterogeneous organocatalysts

    An Intelligent Fuse-box for use with Renewable Energy Sources integrated within a Domestic Environment

    No full text
    This paper outlines a proposal for an intelligent fuse-box that can replace existing fuse-boxes in a domestic context such that a number of renewable energy sources can easily be integrated into the domestic power supply network, without the necessity for complex islanding and network protection. The approach allows intelligent control of both the generation of power and its supply to single or groups of electrical appliances. Energy storage can be implemented in such a scheme to even out the power supplied and simplify the control scheme required, and environmental monitoring and load analysis can help in automatically controlling the supply and demand profiles for optimum electrical and economic efficiency. Simulations of typical scenarios are carried out to illustrate the concept in operation

    Assessing digital preservation frameworks: the approach of the SHAMAN project

    Get PDF
    How can we deliver infrastructure capable of supporting the preservation of digital objects, as well as the services that can be applied to those digital objects, in ways that future unknown systems will understand? A critical problem in developing systems is the process of validating whether the delivered solution effectively reflects the validated requirements. This is a challenge also for the EU-funded SHAMAN project, which aims to develop an integrated preservation framework using grid-technologies for distributed networks of digital preservation systems, for managing the storage, access, presentation, and manipulation of digital objects over time. Recognising this, the project team ensured that alongside the user requirements an assessment framework was developed. This paper presents the assessment of the SHAMAN demonstrators for the memory institution, industrial design and engineering and eScience domains, from the point of view of user’s needs and fitness for purpose. An innovative synergistic use of TRAC criteria, DRAMBORA risk registry and mitigation strategies, iRODS rules and information system models requirements has been designed, with the underlying goal to define associated policies, rules and state information, and make them wherever possible machine-encodable and enforceable. The described assessment framework can be valuable not only for the implementers of this project preservation framework, but for the wider digital preservation community, because it provides a holistic approach to assessing and validating the preservation of digital libraries, digital repositories and data centres

    Sir John Orde and the Trafalgar Campaign—A Failure of Information Sharing

    Get PDF
    When France’s Toulon Fleet appeared off Cádiz in April 1805, Orde possessed more information about the whereabouts and strength of the Combined Fleet than any other British flag officer, placing immense responsibility on him to share that information widely and quickly. But in this he failed, costing Lord Nelson a good chance of bringing the campaign to a halt six months before Trafalgar, and providing an example of a failure to achieve mission command

    A continuum model for the dynamics of the phase transition from slow-wave sleep to REM sleep

    Get PDF
    Previous studies have shown that activated cortical states (awake and rapid eye-movement (REM) sleep), are associated with increased cholinergic input into the cerebral cortex. However, the mechanisms that underlie the detailed dynamics of the cortical transition from slow-wave to REM sleep have not been quantitatively modeled. How does the sequence of abrupt changes in the cortical dynamics (as detected in the electrocorticogram) result from the more gradual change in subcortical cholinergic input? We compare the output from a continuum model of cortical neuronal dynamics with experimentally-derived rat electrocorticogram data. The output from the computer model was consistent with experimental observations. In slow-wave sleep, 0.5–2-Hz oscillations arise from the cortex jumping between “up” and “down” states on the stationary-state manifold. As cholinergic input increases, the upper state undergoes a bifurcation to an 8-Hz oscillation. The coexistence of both oscillations is similar to that found in the intermediate stage of sleep of the rat. Further cholinergic input moves the trajectory to a point where the lower part of the manifold in not available, and thus the slow oscillation abruptly ceases (REM sleep). The model provides a natural basis to explain neuromodulator-induced changes in cortical activity, and indicates that a cortical phase change, rather than a brainstem “flip-flop”, may describe the transition from slow-wave sleep to REM

    What can a mean-field model tell us about the dynamics of the cortex?

    Get PDF
    In this chapter we examine the dynamical behavior of a spatially homogeneous two-dimensional model of the cortex that incorporates membrane potential, synaptic flux rates and long- and short-range synaptic input, in two spatial dimensions, using parameter sets broadly realistic of humans and rats. When synaptic dynamics are included, the steady states may not be stable. The bifurcation structure for the spatially symmetric case is explored, identifying the positions of saddle–node and sub- and supercritical Hopf instabilities. We go beyond consideration of small-amplitude perturbations to look at nonlinear dynamics. Spatially-symmetric (breathing mode) limit cycles are described, as well as the response to spatially-localized impulses. When close to Hopf and saddle–node bifurcations, such impulses can cause traveling waves with similarities to the slow oscillation of slow-wave sleep. Spiral waves can also be induced. We compare model dynamics with the known behavior of the cortex during natural and anesthetic-induced sleep, commenting on the physiological significance of the limit cycles and impulse responses

    Snatch trajectory of elite level girevoy (Kettlebell) sport athletes and its implications to strength and conditioning coaching

    Get PDF
    Girevoy sport (GS) has developed only recently in the West, resulting in a paucity of English scientific literature available. The aim was to document kettlebell trajectory of GS athletes performing the kettlebell snatch. Four elite GS athletes (age = 29-47 years, body mass = 68.3-108.1 kg, height 1.72-1.89 m) completed one set of 16 repetitions with a 32.1 kg kettlebell. Trajectory was captured with the VICON motion analysis system (250 Hz) and analysed with VICON Nexus (1.7.1). The kettlebell followed a ‘C’ shape trajectory in the sagittal plane. Mean peak velocity in the upwards phase was 4.03 ± 0.20 m s –1, compared to 3.70 ± 0.30 m s–1 during the downwards phase, and mean radial error across the sagittal and frontal planes was 0.022 ± 0.006 m. Low error in the movement suggests consistent trajectory is important to reduce extraneous movement and improve efficiency. While the kettlebell snatch and swing both require large anterior-posterior motion, the snatch requires the kettlebell to be held stationary overhead. Therefore, a different coaching application is required to that of a barbell snatch

    Measuring the electrical impedance of mouse brain tissue

    Get PDF
    We report on an experimental method to measure conductivity of cortical tissue. We use a pair of 5mm diameter Ag/AgCl electrodes in a Perspex sandwich device that can be brought to a distance of 400 microns apart. The apparatus is brought to uniform temperature before use. Electrical impedance of a sample is measured across the frequency range 20 Hz-2.0 MHz with an Agilent 4980A four-point impedance monitor in a shielded room. The equipment has been used to measure the conductivity of mature mouse brain cortex in vitro. Slices 400 microns in thickness are prepared on a vibratome. Slices are bathed in artificial cerebrospinal fluid (ACSF) to keep them alive. Slices are removed from the ACSF and sections of cortical tissue approximately 2 mm times 2 mm are cut with a razor blade. The sections are photographed through a calibrated microscope to allow identification of their cross-sectional areas. Excess ACSF is removed from the sample and the sections places between the electrodes. The impedance is measured across the frequency range and electrical conductivity calculated. Results show two regions of dispersion. A low frequency region is evident below approximately 10 kHz, and a high frequency dispersion above this. Results at the higher frequencies show a good fit to the Cole-Cole model of impedance of biological tissue; this model consists of resistive and non-linear capacitive elements. Physically, these elements are likely to arise due to membrane polarization and migration of ions both intra- and extra-cellularly.http://www.iupab2014.org/assets/IUPAB/NewFolder/iupab-abstracts.pd

    Single shot, temporally and spatially resolved measurements of fast electron dynamics using a chirped optical probe

    Get PDF
    A new approach to rear surface optical probing is presented that permits multiple, time-resolved 2D measurements to be made during a single, ultra-intense ( > 1018 W cm−2) laser-plasma interaction. The diagnostic is capable of resolving rapid changes in target reflectivity which can be used to infer valuable information on fast electron transport and plasma formation at the target rear surface. Initial results from the Astra-Gemini laser are presented, with rapid radial sheath expansion together with detailed filamentary features being observed to evolve during single shots

    Archaeology on the Western Front : Memory, Narrative, Identity

    Get PDF
    This thesis concerns the archaeology of the Western Front and the way a discipline concerned with the materiality and spatiality of the past can impact upon the popular memory of the battlefields
    corecore