47 research outputs found

    Optimal laser-control of double quantum dots

    Get PDF
    Coherent single-electron control in a realistic semiconductor double quantum dot is studied theoretically. Using optimal-control theory we show that the energy spectrum of a two-dimensional double quantum dot has a fully controllable transition line. We find that optimized picosecond laser pulses generate population transfer at significantly higher fidelities (>0.99) than conventional sinusoidal pulses. Finally we design a robust and fast charge switch driven by optimal pulses that are within reach of terahertz laser technology.Comment: 5 pages, 4 figure

    Optimal Control of charge transfer

    Full text link
    In this work, we investigate how and to which extent a quantum system can be driven along a prescribed path in space by a suitably tailored laser pulse. The laser field is calculated with the help of quantum optimal control theory employing a time-dependent formulation for the control target. Within a two-dimensional (2D) model system we have successfully optimized laser fields for two distinct charge transfer processes. The resulting laser fields can be understood as a complicated interplay of different excitation and de-excitation processes in the quantum system

    Optimal Control of Quantum Rings by Terahertz Laser Pulses

    Get PDF
    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.Comment: Phys. Rev. Lett. (in print) (2007

    Tailoring laser pulses with spectral and fluence constraints using optimal control theory

    Full text link
    Within the framework of optimal control theory we develop a simple iterative scheme to determine optimal laser pulses with spectral and fluence constraints. The algorithm is applied to a one-dimensional asymmetric double well where the control target is to transfer a particle from the ground state, located in the left well, to the first excited state, located in the right well. Extremely high occupations of the first excited state are obtained for a variety of spectral and/or energetic constraints. Even for the extreme case where no resonance frequency is allowed in the pulse the algorithm achieves an occupation of almost 100%

    Optimal control of time-dependent targets

    Full text link
    In this work, we investigate how and to which extent a quantum system can be driven along a prescribed path in Hilbert space by a suitably shaped laser pulse. To calculate the optimal, i.e., the variationally best pulse, a properly defined functional is maximized. This leads to a monotonically convergent algorithm which is computationally not more expensive than the standard optimal-control techniques to push a system, without specifying the path, from a given initial to a given final state. The method is successfully applied to drive the time-dependent density along a given trajectory in real space and to control the time-dependent occupation numbers of a two-level system and of a one-dimensional model for the hydrogen atom.Comment: less typo

    Quantum control with spectral constraints

    Get PDF
    Various constraints concerning control fields can be imposed in the realistic implementations of quantum control systems. One of the most important is the restriction on the frequency spectrum of acceptable control parameters. It is important to consider the limitations of experimental equipment when trying to find appropriate control parameters. Therefore, in this paper we present a general method of obtaining a piecewise-constant controls, which are robust with respect to spectral constraints. We consider here a Heisenberg spin chain, however the method can be applied to a system with more general interactions. To model experimental restrictions we apply an ideal low-pass filter to numerically obtained control pulses. The usage of the proposed method has negligible impact on the control quality as opposed to the standard approach, which does not take into account spectral limitations.Comment: 6 pages, 4 figure

    Optimal Control of Superconducting N-level quantum systems

    Full text link
    We consider a current-biased dc SQUID in the presence of an applied time-dependent bias current or magnetic flux. The phase dynamics of such a Josephson device is equivalent to that of a quantum particle trapped in a 11-D anharmonic potential, subject to external time-dependent control fields, {\it i.e.} a driven multilevel quantum system. The problem of finding the required time-dependent control field that will steer the system from a given initial state to a desired final state at a specified final time is formulated in the framework of optimal control theory. Using the spectral filter technique, we show that the selected optimal field which induces a coherent population transfer between quantum states is represented by a carrier signal having a constant frequency but which is time-varied both in amplitude and phase. The sensitivity of the optimal solution to parameter perturbations is also addressed

    On the thermalization of a Luttinger liquid after a sequence of sudden interaction quenches

    Full text link
    We present a comprehensive analysis of the relaxation dynamics of a Luttinger liquid subject to a sequence of sudden interaction quenches. We express the critical exponent β\beta governing the decay of the steady-state propagator as an explicit functional of the switching protocol. At long distances β\beta depends only on the initial state while at short distances it is also history dependent. Continuous protocols of arbitrary complexity can be realized with infinitely long sequences. For quenches of finite duration we prove that there exist no protocol to bring the initial non-interacting system in the ground state of the Luttinger liquid. Nevertheless memory effects are washed out at short-distances. The adiabatic theorem is then investigated with ramp-switchings of increasing duration, and several analytic results for both the propagator and the excitation energy are derived.Comment: 7 pages, 4 figure

    Hubbard ring: currents induced by change of magnetic flux

    Full text link
    We investigate currents in a quantum ring threaded by a magnetic flux which can be varied in an arbitrary way from an initial value ϕi\phi_i at time tit_i to a final value ϕf\phi_f at time tft_f. Dynamics of electrons in the ring is described by the Hubbard and the extended Hubbard models. We demonstrate that time dependence of the induced current bears information on electron correlations. In the case of the Hubbard model with infinite on--site repulsion we prove that the current for t>tft>t_f is independent of the flux variation before tft_f. Additionally, this current is fully determined by a solution of the initial equilibrium problem and the value of ϕf\phi_f. Apart from mesoscopic rings our results pose important implications for designing of quantum motors built out as the ring--shaped optical lattice

    Quantum control theory for coupled 2-electron dynamics in quantum dots

    Full text link
    We investigate optimal control strategies for state to state transitions in a model of a quantum dot molecule containing two active strongly interacting electrons. The Schrodinger equation is solved nonperturbatively in conjunction with several quantum control strategies. This results in optimized electric pulses in the THz regime which can populate combinations of states with very short transition times. The speedup compared to intuitively constructed pulses is an order of magnitude. We furthermore make use of optimized pulse control in the simulation of an experimental preparation of the molecular quantum dot system. It is shown that exclusive population of certain excited states leads to a complete suppression of spin dephasing, as was indicated in Nepstad et al. [Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure
    corecore