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Abstract Various constraints concerning control fields can be imposed in the real-
istic implementations of quantum control systems. One of the most important is the
restriction on the frequency spectrum of acceptable control parameters. It is important
to consider the limitations of experimental equipment when trying to find appropriate
control parameters. Therefore, in this paper, we present a general method of obtaining
a piecewise-constant controls, which are robust with respect to spectral constraints.
We consider here a Heisenberg spin chain; however, the method can be applied to a
system with more general interactions. To model experimental restrictions, we apply
an ideal low-pass filter to numerically obtained control pulses. The usage of the pro-
posed method has negligible impact on the control quality as opposed to the standard
approach, which does not take into account spectral limitations.

Keywords Quantum information · Quantum computation · Control in mathematical
physics

1 Introduction

One of the fundamental issues of the quantum information science is the ability
to manipulate the dynamics of a given complex quantum system. Since the begin-
ning of quantum mechanics, controlling a quantum system has been an implicit
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goal of quantum physics, chemistry, and implementations of quantum information
processing.

If a given quantum system is controllable, i.e., it is possible to drive it into a
previously fixed state, it is desirable to develop a control strategy to accomplish the
required control task. In the case of finite dimensional quantum systems, the criteria
for controllability can be expressed in terms of Lie-algebraic concepts [1–3]. These
concepts provide a mathematical tool, in the case of closed quantum systems, i.e.,
systems without external influences.

It is an important question whether the system is controllable when the control is
performed only on a subsystem. This kind of approach is called a local-controllability
and can be considered only in the case when the subsystems of a given system interact.
As examples may serve coupled spin chains or spin networks [2,4–6]. Local-control
has a practical importance in proposed quantum computer architectures, as its imple-
mentation is simpler and the effect of decoherence is reduced by decreased number of
control actuators [7,8].

A widely used method for manipulating a quantum system is a coherent control
strategy, where the manipulation of the quantum states is achieved by applying semi-
classical potentials in a fashion that preserves quantum coherence. In the case when
a system is controllable, it is a point of interest what actions must be performed to
control a system most efficiently, bearing in mind limitations imposed by practical
restrictions. Various constraints concerning control fields can be imposed in the real-
istic implementations of quantum control systems. One of the most important is the
restriction on the frequency spectrum of acceptable control parameters. Such restric-
tions come into play, for example, in an experimental setup that utilizes an external
magnetic field [9]. In the case of such systems, due to various limitations, the appli-
cation of piecewise-constant controls is not accurate. The real realization of controls
is somehow smoothed by some filter induced by an experimental limitations. Thus, it
is reasonable to seek control parameters in the domain imposed by the experimental
restrictions.

In article [10], there has been discussed how the low-pass filtering, i.e., eliminating
high-frequency components in a Fourier spectra, on a numerically obtained optimal
control pulses affects a quality of performed control. This approach makes a contact
with experimental realizations, since it implements the limitations or real quantum
control systems.

In this paper, we present a general method of obtaining a piecewise-constant con-
trols, which is robust with respect to low-pass filtering. The above means that elim-
ination of high frequencies in a Fourier spectra reduces the fidelity only by a small
amount. We utilize this approach to obtain numerically control pulses on a Heisenberg
spin chain [10–12]; however, it can be applied to a quantum system with more general
interactions.

This paper is organized as follows. In Sect. 2, we provide a general description
of a quantum mechanical control system. In Sect. 3, we provide the description of
the simulation setup used to test our model. Section 4 contains results obtained from
numerical simulations and their discussion. In Sect. 5, we provide a summary of the
presented work and give some concluding remarks.
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2 Our model

To demonstrate a method of obtaining piecewise-constant controls, which are robust
with respect to low-pass filtering, we will consider an isotropic Heisenberg spin-
1/2 chain of a finite length N . The control will be performed on the first spin
only. The total Hamiltonian of the aforementioned quantum control system is given
by

H(t) = H0 + Hc(t), (1)

where

H0 = J
N−1∑

i=1

Si
x Si+1

x + Si
y Si+1

y + Si
z Si+1

z , (2)

is a drift part given by the Heisenberg Hamiltonian. The control is performed only on
a first spin and is Zeeman-like, i.e.,

Hc(t) = hx (t)S1
x + hy(t)S1

y . (3)

In the above, Si
k denotes kth Pauli matrix acting on the spin i . Time-dependent control

parameters hx (t) and hy(t) are chosen to be piecewise constant. We will refer to
the values of the control pulses in the i th time interval as hx,i and hy,i . When we
reference a general control pulse without specifying the direction, we will write hl and
the corresponding control Hamiltonian will be denoted Hl . Furthermore, as opposed
to [10], we do not restrict the control fields to be alternating with x and y, i.e., they
can be applied simultaneously (see e.g. [13] for similar approach). For notational
convenience, we set h̄ = 1, and after this, rescaling frequencies and control field
amplitudes can be expressed in units of the coupling strength J , and on the other
hand, all times can be expressed in units of 1/J [10].

The system described above is operator controllable, as it was shown in [5] and
follows from a controllability condition using a graph infection property introduced
in the same article. The controllability of the described system can be also deduced
from a more general condition utilizing the notion of hypergraphs [6].

Since the interest here is focused on operator control, a quality of a control will be
measured with the use of gate fidelity,

F = 1

2N
|Tr(U †

T U (h))|, (4)

where UT is the target quantum operation and U (h) is an operation achieved by control
parameters h. We choose gate fidelity as it neglects global phases.

To obtain piecewise-constant controls, which are robust with respect to low-pass
filtering we will minimize the power in the high frequency part of a controls Fourier
spectrum. We will do so by minimizing the following functional
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G = (1 − μ)P − μF, (5)

where F is the gate fidelity described above, μ is a weight assigned to fidelity and P
is a contribution of high frequencies in the total power of the control parameters. The
above can be stated as, if y is a vector of Fourier coefficients for a control parameters
h of length n, i.e.

y = Qh, where Q = n−1/2{e2π ikl/n}n−1
k,l=0, (6)

then P is given by

P =
∑ n

2 +�

i= n
2 −�

|yi |2
|y|2 , (7)

for some � related to the cutoff frequency of low-pass filter.

3 Simulation setup

To demonstrate the beneficialness of our approach, we study three- and four-qubit spin
chains. The control field is applied to the first qubit only. Our target gates are:

NOTN = 1⊗N−1 ⊗ σx , (8)

the negation of the last qubit of the chain, and

SWAPN = 1⊗N−2 ⊗ SWAP, (9)

swapping the states between the last two qubits.
For each of these cases, we find two sets of control parameters. One with fre-

quency constraints and one without. Next, we calculate an appropriate filter and
using these filtered values of control parameters, we calculate the fidelity of the
quantum operation. In each case, 120 independent sets of control parameters were
found.

We provide an explicit example in which we set the duration of the control
pulse to �t = 0.2 and the total number of pulses in each direction to n = 128
for the three-qubit chain and n = 512 in the four-qubit case, although the pre-
sented method may be applied for arbitrary values of �t and n. The weight of
fidelity in Eq. (5) is set to μ = 1 in the unconstrained case and to μ = 0.05
in the constrained case. Although the weight of the fidelity is small, the opti-
mization still yields high fidelity values while maintaining low contribution of
high frequencies in the power spectrum. We set the cutoff frequency in Eq. (7) to
� = n

4 .
The applied filter is a frequency filter with the cutoff frequency equal to the fre-

quency discriminated by the functional (5). As an example, we consider this filter
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to be an ideal low-pass filter, which was previously studied, e.g., in [11]. Obvi-
ously, one can use other filters. A more general discussion of spectral filtering is
presented in [14]. The ideal low-pass filter leaves the frequencies only in the interval
[−ω0, ω0] : f (ω) = �(ω+ω0)−�(ω−ω0), where � is the Heaviside step function.
We obtain the following expressions for the filtered control parameters [11]:

ĥk(t) = 1

π

n∑

i=1

hk,i [ai+1(t) − ai (t)], (10)

where k ∈ {x, y} and t denotes time. In other words, ĥk(t) is a filtered version of the
control fields hk at the time moment t .

an(t) = Si [ω0(n�t − t)] , (11)

Si(x) =
x∫

0

(sin t/t)dt. (12)

The calculation of the gradient of the fidelity function can be found in the work by
Machnes et al. [15]. Here, we only show the final result of the calculation

∂ F(Uk)

∂hl
= 1

N
�Tr

{
e−iφU †

T Un . . . Uk+1
∂UK

∂hl
Uk−1U1

}
, (13)

where

e−iφ = Tr(U †
T U (h))

F
,

and ∂UK
∂hl

may be computed using the following formula [15, Equation (24)]

〈λk | ∂U

∂hl
|λm〉 =

{−i�t〈λk |Hl |λm〉e−i�tλk if λk = λm

〈λk |Hl |λm〉 e−i�tλk −e−i�tλm

(λk−λm )
if λk �= λm

, (14)

where U is the unitary gate implemented by the control pulses

U = exp(−i�t H) = exp

(
−i�t

(
H0 +

∑

l

hl Hl

))
. (15)

In this case, Hl is the control Hamiltonian corresponding to the control pulse hl . |λ〉
and λ are the eigenvectors and eigenvalues of the total Hamiltonian of the system.

We conduct our simulations using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [16]. This method is commonly used in quantum control theory for
optimization of control pulses [10,11,17]. We first choose an initial guess for the
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control field vectors. The algorithm then generates iteratively new control field vec-
tors such that at each iteration point, the fidelity is increased. The algorithm ter-
minates after a desired accuracy is reached. This procedure ensures convergence
to a local maximum, but does not guarantee the convergence to a globally opti-
mal sequence. Hence, we perform a number of simulations, using different initial
conditions.

To calculate the gradient of P , one should note an elementary fact concerning
differentiation of vector valued functions. For a real vector h, we define y = Ah for
some fixed matrix A. Straightforward calculations give us

∂|yk |2
∂hl

= 2�(Akl yk). (16)

In the case when matrix is a quantum Fourier transform gate A = Q defined in Eq. (6),
we obtain that

∂|yk |2
∂hl

= 2�(Qkl yk) = 2√
n
�(e−2π ikl/n yk). (17)

This calculation is used to find the gradient of the contribution of high frequencies in
the total power given by Eq. (7).

4 Results

Figure 1a shows a plot of the control parameters for the target gate UT = NOT3 before
and after applying the frequency filter. These parameters were found using with the
value of the weight μ = 1, resulting in no penalty for high-frequency terms. Clearly,
the signal after filtering differs from the original values. This is reflected in the values
of the fidelity of the operation. Before filtering, the fidelity is F > 1−10−12; however,
after filtering, the value drops to F = 0.85.

Next, in Fig. 1b, we show the plot of the control parameters for the target gate
UT = NOT3, before and after applying the frequency filter. Only this time, the controls
were found using the value of the weight μ = 0.05 resulting in a penalty for high-
frequency terms. A short glance reveals that the filtered parameters are almost the same
as the original ones. This is reflected by the fidelity of the operation. Before filtering,
the fidelity is F > 1 − 10−9, and after filtering, it drops only to F > 1 − 10−2, which
is still a satisfactory value. Hence, these sets of control parameters are well-suited for
use in computations.

Figure 2a, b shows analogical results for the target gate UT = SWAP3. The qual-
itative results in this case are the same as for the NOT3 target gate discussed earlier.
Fidelity values before and after filtering are the same order as for the NOT3 gate.
Again, we reach a conclusion that these sets of control parameters are well suited for
use in computations.
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(a)

(b)

Fig. 1 x and y components of the control field for target gate UT = NOT3. a Unconstrained case. b
Constrained case
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Fig. 2 x and y components of the control field for target gate UT = SWAP3. a Unconstrained case. b
Constrained case
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Fig. 3 A histogram of the fidelities after filtering. Top without considering spectral constraints, bottom
with spectral constraints considered. Target gate UT = NOT3

Results obtained for the four-qubit chain (not shown here) qualitatively resemble
the results for the three-qubit chain. In this case, a penalty for high-frequency terms
of the control parameters also leads to higher fidelities after filtering.

Figure 3 depicts the histograms of fidelities of filtered control parameters for the
NOT3 gate for different initial vectors of control fields. These vectors are drawn at
random; coordinates are stochastically independent and have a uniform distribution on
an interval [−10, 10]. The top plot shows the histograms for control parameters found
without spectral constraints and the bottom one shows what happens when one takes
spectral constraints into consideration. Clearly, a typical set of control parameters has a
higher fidelity of operation when one considers spectral constraints in the optimization
phase. Strictly speaking, around 80 % of the control parameter sets have a fidelity
greater than 0.96, whereas in the unconstrained case, there are no control parameter
sets that have such high fidelities. These facts lead to a conclusion that optimization
with spectral constraints will lead to high fidelity of experimental realizations of the
NOT3 gate.

Analogical results for the SWAP3 are shown in Fig. 4. The top plot shows the
histograms for control parameters found without spectral constraints, and the bot-
tom one shows what happens when one takes spectral constraints into consideration.
In this case, around 75 % of all constrained control parameter sets have a fidelity
higher than 0.96 after filtering. Also, there are no unconstrained control parameter sets
with fidelities in this range. Hence, spectral constraints imposed during the optimiza-
tion step have led to control parameters far less sensitive to experimental equipment
limitations.
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Fig. 4 A histogram of the fidelities after filtering. Top without considering spectral constraints, bottom
with spectral constraints considered. Target gate UT = SWAP3

5 Conclusions

We investigated the impact of spectral constraints imposed on the control parameters of
a quantum operation on the fidelity of the quantum operation which they implement.
In order to compare our approach with the unconstrained case, we apply an ideal
low-pass filter to the control parameters.

We have shown that imposing spectral constraints on the control parameters leads
to higher average fidelity of the quantum operation after appropriate filtering, than in
the unconstrained case. These results are independent of the type of quantum operation
and the number of qubits in the system under consideration.

Furthermore, the requirement for smooth control parameters does not result in the
increase in time necessary to conduct a quantum operation. Comparing with other
research in the field [11], our times are on the same order.

Further work on this subject might take into account more subtle parameters of
the experimental setup than the frequency cutoff of signal sources. For instance, one
could wish to find control parameters that are far from transient characteristics of
the experimental setup. This may lead to an enhancement of fidelities of operations
achieved experimentally by eliminating unwanted signal roughness.
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