457 research outputs found

    Biogeochemistry and geomicrobiology of cold-water coral carbonate mounds - lessons learned from IODP Expedition 307

    Get PDF
    Large mound structures associated with cold-water coral ecosystems commonly occur on the slopes of continental margins, for instance, west of Ireland in the Porcupine Seabight, the Gulf of Cadiz or the Straits of Florida. In the Porcupine Seabight over 1500 mounds of up to 5 km in diameter and 250 m height lie at water depths of 600 to 900 m. The cold-water coral reef ecosystems associated with these structures are considered to be “hotspots” of organic carbon mineralization and microbial systems. To establish a depositional and biogeochemical/diagenetic model for cold-water carbonate mounds, Challenger Mound and adjacent continental slope sites were drilled in May 2005 during IODP Expedition 307. One major objective was to test whether deep sub-surface hydrocarbon flow and enhanced microbial activity within the mound structure was important in producing and stabilizing these sedimentary structures.Drilling results showed that the Challenger mound succession (IODP Site U1317) is 130 to 150 meters thick, and mainly consists of floatstone and rudstone facies formed of fine sediments and cold-water branching corals. Pronounced recurring cycles on the scales of several meters are recognized in carbonate content (up to 70% carbonate) and color reflectance, and are probably associated with Pleistocene glacial-interglacial cycles. A role for methane seepage and subsequent anaerobic oxidation was discounted both as a hard-round substrate for mound initiation and as a principal source of carbonate within the mound succession. A broad sulfate-methane transition (approximately 50 m thick) within the Miocene sediments suggested that the zone of anaerobic oxidation of methane principally occurs below the moundbase. In the mound sediments, interstitial water profiles of sulfate, alkalinity, Mg, and Sr suggested a tight coupling between carbonate diagenesis and low rates of microbial sulfate reduction. Overall organic carbon mineralization within cold-water coral mound appeared to be dominated by low rates of iron- and sulfate-reduction that occur in discrete layers within the mound. This was consistent with distributions of total cell-counts, acetate turnover (Webster et al. 2009) and hydrogenase activity (Soffiento et al. 2009). However, biomarker lipid distributions suggested that the Miocene sediments underlying the mound, into which sulfate is diffusing, as well as the sediments from the non-cold water coral reference site (U1318) contain higher abundances of living microbes. The results obtained from Expedition 307 are consistent with a picture emerging from other biogeochemical studies of cold-water coral mound and reef sites. Unless impacted by some external forcing (e.g. fluid flow or erosion event), the microbial activity in the underlying cold-water coral mound sediments is largely decoupled from the highly diverse, active surface ecosystem

    A Jackknife Approach to Examine Uncertainty and Temporal Change in the Spatial Correlation of a VOC Plume

    Full text link
    The application of geostatistics to spatial interpolation of time-invariant properties in ground-water studies (such as transmissivity or aquifer thickness) is well documented. The use of geostatistics on time-variant conditions such as ground-water quality is also becoming more commonplace. Unfortunately, the detection of temporal changes in spatial correlation through direct comparison of experimental semivariograms is difficult due to the uncertainty in sample semivariograms constructed from field data. This paper discusses the use of the jackknife approach to estimate confidence limits of semivariograms of trichloroethane (TC) and other volatile organic compounds (VOC) in contaminated ground-water in northern Illinois. Examination of the ‘spread’ of the confidence limits about the semivariograms created from two types of sampling networks are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42695/1/10661_2004_Article_182073.pd

    Glacial controls on redox-sensitive trace element cycling in Arctic fjord sediments (Spitsbergen, Svalbard)

    Get PDF
    Glacial meltwater is an important source of bioessential trace elements to high latitude oceans. Upon delivery to coastal waters, glacially sourced particulate trace elements are processed during early diagenesis in sediments and may be sequestered or recycled back to the water column depending on local biogeochemical conditions. In the glaciated fjords of Svalbard, large amounts of reactive Fe and Mn (oxyhydr)oxides are delivered to the sediment by glacial discharge, resulting in pronounced Fe and Mn cycling concurrent with microbial sulfate reduction. In order to investigate the diagenetic cycling of selected trace elements (As, Co, Cu, Mo, Ni, and U) in this system, we collected sediment cores from two Svalbard fjords, Van Keulenfjorden and Van Mijenfjorden, in a transect along the head-to-mouth fjord axis and analyzed aqueous and solid phase geochemistry with respect to trace elements, sulfur, and carbon along with sulfate reduction rates. We found that Co and Ni associate with Fe and Mn (oxyhydr)oxides and enter the pore water upon reductive metal oxide dissolution. Copper is enriched in the solid phase where sulfate reduction rates are high, likely due to reactions with H2S and the formation of sulfide minerals. Uranium accumulates in the solid phase likely following reduction by both Fe- and sulfate-reducing bacteria, while Mo adsorbs to Fe and Mn (oxyhydr)oxides in the surface sediment and is removed from the pore water at depth where sulfidization makes it particle-reactive. Arsenic is tightly coupled to Fe redox cycling and its partitioning between solid and dissolved phases is influenced by competition with FeS for adsorption sites on crystalline Fe oxides. Differences in trace element cycling between the two fjords suggest delivery of varying amount and composition of tidewater glacier (Van Keulenfjorden) and meltwater stream (Van Mijenfjorden) material, likely related to oxidative processes occurring in meltwater streams. This processing produces a partially weathered, more reactive sediment that is subject to stronger redox cycling of Fe, Mn, S, and associated trace elements upon delivery to Van Mijenfjorden. With climate warming, the patterns of trace element cycling observed in Van Mijenfjorden may also become more prevalent in other Svalbard fjords as tidewater glaciers retreat into meltwater stream valleys

    Packed Red Blood Cell Transfusion Associates with Acute Kidney Injury After Transcatheter Aortic Valve Replacement

    Get PDF
    Background: Acute kidney injury after cardiac surgery significantly associates with morbidity and mortality. Despite not requiring cardiopulmonary bypass, transcatheter aortic valve replacement patients have an incidence of post-procedural acute kidney injury similar to patients who undergo open surgical aortic valve replacement. Packed red blood cell transfusion has been associated with morbidity and mortality after cardiac surgery. We hypothesized that packed red blood cell transfusion independently associates with acute kidney injury after transcatheter aortic valve replacement, after accounting for other risk factors. Methods: This is a single-center retrospective cohort study of 116 patients undergoing transcatheter aortic valve replacement. Post-transcatheter aortic valve replacement acute kidney injury was defined by Kidney Disease: Improving Global Outcomes serum creatinine-based criteria. Univariate comparisons between patients with and without post-transcatheter aortic valve replacement acute kidney injury were made for clinical characteristics. Multivariable logistic regression was used to assess independent association of packed red blood cell transfusion with post-transcatheter aortic valve replacement acute kidney injury (adjusting for pre-procedural renal function and other important clinical parameters). Results: Acute kidney injury occurred in 20 (17.2%) subjects. Total number of packed red blood cells transfused independently associated with post-procedure acute kidney injury (OR = 1.67 per unit, 95% CI 1.13–2.47, P = 0.01) after adjusting for pre-procedure estimated glomerular filtration rate (OR = 0.97 per ml/min/1.73m2, 95% CI 0.94–1.00, P = 0.05), nadir hemoglobin (OR = 0.88 per g/dL increase, CI 0.61–1.27, P = 0.50), and post-procedure maximum number of concurrent inotropes and vasopressors (OR = 2.09 per inotrope or vasopressor, 95% CI 1.19–3.67, P = 0.01). Conclusion: Packed red blood cell transfusion, along with post-procedure use of inotropes and vasopressors, independently associate with acute kidney injury after transcatheter aortic valve replacement. Further studies are needed to elucidate the pathobiology underlying these associations

    Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The Argentine continental margin

    Get PDF
    The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR). Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS). Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths
    corecore