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Abstract  

 Glacial meltwater is an important source of bioessential trace elements to high latitude 

oceans. Upon delivery to coastal waters, glacially sourced particulate trace elements are 

processed during early diagenesis in sediments and may be sequestered or recycled back to the 

water column depending on local biogeochemical conditions. In the glaciated fjords of Svalbard, 

large amounts of reactive Fe and Mn (oxyhydr)oxides are delivered to the sediment by glacial 

discharge, resulting in pronounced Fe and Mn cycling concurrent with microbial sulfate 

reduction. In order to investigate the diagenetic cycling of selected trace elements (As, Co, Cu, 

Mo, Ni, and U) in this system, we collected sediment cores from two Svalbard fjords, Van 

Keulenfjorden and Van Mijenfjorden, in a transect along the head-to-mouth fjord axis and 

analyzed aqueous and solid phase geochemistry with respect to trace elements, sulfur, and 

carbon along with sulfate reduction rates. We found that Co and Ni associate with Fe and Mn 

(oxyhydr)oxides and enter the pore water upon reductive metal oxide dissolution. Copper is 

enriched in the solid phase where sulfate reduction rates are high, likely due to reactions with 

H2S and the formation of sulfide minerals. Uranium accumulates in the solid phase likely 

following reduction by both Fe- and sulfate-reducing bacteria, while Mo adsorbs to Fe and Mn 

(oxyhydr)oxides in the surface sediment and is removed from the pore water at depth where 

sulfidization makes it particle-reactive. Arsenic is tightly coupled to Fe redox cycling and its 

partitioning between solid and dissolved phases is influenced by competition with FeS for 

adsorption sites on crystalline Fe oxides. Differences in trace element cycling between the two 

fjords suggest delivery of varying amount and composition of tidewater glacier (Van 

Keulenfjorden) and meltwater stream (Van Mijenfjorden) material, likely related to oxidative 

processes occurring in meltwater streams. This processing produces a partially weathered, more 
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reactive sediment that is subject to stronger redox cycling of Fe, Mn, S, and associated trace 

elements upon delivery to Van Mijenfjorden. With climate warming, the patterns of trace 

element cycling observed in Van Mijenfjorden may also become more prevalent in other 

Svalbard fjords as tidewater glaciers retreat into meltwater stream valleys.  

 

1. Introduction  

 In high latitude regions, the sub- and proglacial environment is an important zone of 

physical and chemical (biotic and abiotic) weathering of bedrock which provides a significant 

source of trace elements to the ocean (e.g. Anderson et al., 1997; Mitchell et al., 2001, 2006; 

Raiswell et al., 2006; Statham et al., 2008; Bhatia et al., 2013; Hawkings et al., 2014, 2018). 

Polar ocean productivity is thought to be limited by the availability of iron (Fe) and other 

bioessential trace elements such as cobalt (Co), nickel (Ni), and copper (Cu), and therefore 

changes in glacial supply of these elements may have implications for primary productivity and 

associated global biogeochemical cycles (Morel et al., 1991; Cullen, 2006; Nielsdóttir et al., 

2009; Sunda, 2012; Rijkenberg et al., 2018). Many trace elements have a low solubility in 

seawater and accumulate in marine sediments, where they undergo biogeochemical 

transformations and are subsequently sequestered in the solid phase or recycled back to the water 

column (Morel and Price, 2003; Cid et al., 2012; Charette et al., 2016; Kondo et al., 2016).  

The behavior of trace elements in sediments is controlled by early diagenetic processes, 

mainly the redox changes associated with remineralization of organic matter. Remineralization 

can affect trace element behavior by generating metabolic products (e.g. Mn2+, Fe2+, and H2S) 

that react with the trace elements or by changing the ambient oxidation state and causing 

reductive/oxidative dissolution or precipitation (Shaw et al., 1990; Calvert and Pedersen, 1993; 
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Achterberg et al., 1997; Morford and Emerson, 1999; Algeo and Maynard, 2004; Tribovillard et 

al., 2006). During dissimilatory reduction of Fe and Mn (oxyhydr)oxides (-OHO), trace elements 

associated with the Fe- and Mn-OHO, such as Co, Ni, and arsenic (As), are released to the pore 

water along with Fe2+ and Mn2+; conversely, the precipitation of Fe and Mn as oxide, carbonate, 

or sulfide minerals can remove these trace elements from the pore water through adsorption or 

co-precipitation (Canfield, 1989; Burdige, 1993; Nameroff et al., 2004; Audry et al., 2006; Tapia 

and Audry, 2013; Monien et al., 2014; Riedinger et al., 2014). During microbial sulfate 

reduction, the production of H2S, formation of sulfide minerals, and oxidation of sulfides can 

serve to sequester or release trace elements such as Cu and molybdenum (Mo) (Huerta-Diaz and 

Morse, 1992; Helz et al., 1996; Morse and Luther III, 1999; Brumsack, 2006). Additionally, 

some trace elements such as uranium (U) may be reduced or oxidized directly by microbes 

(Lovley, 1993). Thus, the biogeochemical fate (sequestration or transport) of each trace element 

is largely controlled by relative rates of Mn, Fe, and S reduction-oxidation in the sediment during 

early diagenesis. 

Iron and manganese cycling in Svalbard fjord sediments is fueled by a large supply of 

reactive Fe- and Mn-OHO delivered in glacial meltwater (Kostka et al., 1999; Nickel et al., 

2008; Wehrmann et al., 2014). Previous studies have suggested that dissimilatory metal oxide 

reduction may contribute 10-26% to the total organic matter remineralization in Svalbard fjords 

(Kostka et al., 1999), and 69-90% to anaerobic carbon mineralization in the top 10 cm of 

sediment in the Barents Sea east of Svalbard (Vandieken et al., 2006). Sulfate reduction is also 

an important metabolic pathway in these sediments, with rates comparable to those of temperate 

shelf sediments (Glud et al., 1998; Sagemann et al., 1998; Kostka et al., 1999). The Svalbard 

fjord deposits near glacial outlets are impacted by non-steady state conditions at the sediment 
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water interface related to episodic changes in organic carbon supply and sediment accumulation 

rate related to seasonality in glacial meltwater pulses and spring/summer phytoplankton blooms 

(Hop et al., 2002; Svendsen et al., 2002). Additionally, the sediments can experience physical 

mixing by bioturbating organisms (Glud et al., 1998) and, in shallow water depths, are frequently 

disturbed by iceberg ploughing and rapid formation and/or slumping of bedforms such as deltas 

around meltwater stream outlets or push moraines at the terminus of surging glaciers 

(Zajączkowski et al., 2004; Forwick et al., 2009; Farnsworth et al., 2017; Hodal et al., 2012; 

Hegseth and Tverberg, 2013; Kempf et al., 2013; Lalande et al., 2016). Given the asymmetry of 

a typical fjord system from head (glacier-influenced) to mouth (ocean-influenced), the fjords 

show strong gradients in physical, chemical, and biological characteristics along the head-to-

mouth axis (Hop et al., 2002; Svendsen et al., 2002; Bourgeois et al., 2016). These dynamic 

conditions exert tight control over the distribution and rates of dissimilatory metal reduction and 

sulfate reduction, which often occur in the same depth horizons of sediment (Buongiorno et al., 

2019). The balance between Fe and S cycling is related to relative inputs of organic carbon and 

glacial material.  

Before delivery to the fjord, glacial material is physically and chemically altered beneath 

the glacier and, in the case of land-terminating glaciers, during transport between the glacial 

terminus and the fjord (e.g. Hodson et al., 2008). In the subglacial zone of small, polythermal 

valley glaciers such as those on Svalbard, comminution of bedrock produces glacial flour with a 

high surface area to volume ratio, which can serve as a substrate for both microbial activity and 

inorganic weathering reactions (Bottrell and Tranter, 2002; Tranter et al., 2002; Wadham et al., 

2004, 2010; Wynn et al., 2006; Montross et al., 2012). Rock-water reactions and active 

subglacial microbial communities produce CO2 that enhances the dissolution of carbonate and 
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silicate bedrock (Tranter et al., 2003). Pyrite oxidation, a particularly important reaction in these 

systems (Tranter et al., 2003), generates protons for further bedrock dissolution, adds 

chemolithoautotrophic energy for the base of the microbial food web, and consumes oxygen to 

allow other redox reactions such as Mn and Fe reduction (Sharp et al., 1999; Hodson et al., 2008; 

Wadham et al., 2010; Boyd et al., 2014; Nixon et al., 2017). There is evidence for active 

subglacial microbial communities beneath several glaciers in close proximity to fjords examined 

in this study (Wadham et al., 2004; Kaštovská et al., 2007). Van Keulenfjorden is fed by several 

polythermal, surge-type tidewater glaciers that deliver glacial sediment directly from the glacier 

either through subglacial discharge or iceberg rafting. Many of the glaciers feeding Van 

Mijenfjorden, in contrast, have retreated such that their termini are now located on land and 

glacial sediment is transported to the fjord through proglacial meltwater streams. Sediment 

transported in these streams is likely subject to weathering reactions such as carbonate 

dissolution, sulfide oxidation, and cation denudation, adding another processing step before 

release of subglacial material into the fjord (Chillrud et al., 1994; Anderson et al., 2000; 

Wadham et al., 2001; Cooper et al., 2002).  

The aim of this study is to investigate the interactions between trace element behavior 

and the cycling of C, S, Fe, and Mn in surface sediments of Van Mijenfjorden and Van 

Keulenfjorden, and how these processes are controlled by glacial input. The Arctic regions are 

particularly sensitive to warming associated with anthropogenic climate change (Spielhagen et 

al., 2011; Larsen et al., 2014), and glaciers throughout the polar regions, including Svalbard, are 

melting rapidly (Dowdeswell et al., 1997; Ziaja, 2001; Kohler et al., 2007; Bliss et al., 2014; 

Zemp et al., 2019). As a result of glacial retreat, land-terminating glaciers and meltwater streams 

are expected to become more prevalent. We aim to understand how such a shift from direct 
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subglacial discharge (e.g. Van Keulenfjorden) to meltwater stream input (e.g. Van Mijenfjorden) 

may influence the trace metal cycling, sequestration, and transport in glacially impacted fjords.  

 

2. Study area and sampling sites  

Svalbard is an archipelago in the northwest Barents Sea between 77 and 80° N, with a 

total land area of 63,000 km2 (Hjelle, 1993). The fjords investigated in this study—Van 

Mijenfjorden and Van Keulenfjorden— are located on the western coast of Spitsbergen, the 

largest and westernmost island in the Svalbard archipelago. The fjords are geographically 

adjacent, and share similar catchment area geologies (Table 1; Fig. 1). The bedrock surrounding 

both fjords is dominated by Helvetiafjellet and Carolinefjellet formations, members of the 

Adventdalen Group that date to the Early Cretaceous and are comprised mainly of shales, 

siltstones, and sandstones, with some carbonate beds and hydrocarbon-rich layers (Dallmann, 

1999). The Van Mijenfjorden Group is also prevalent around both fjords— these 

Paleocene/Eocene formations consist of shales, siltstones, and sandstones with seams of coal. 

Many of these formations are marine in origin and contain minerals such as glauconite, siderite, 

dolomite, clay ironstone, and pyrite. Van Keulenfjorden may also be influenced by the 

Sassdalen, Kapp Toscana, Janusfjellet, and Tempelfjorden groups from the Triassic, Jurassic, 

and Permian. These shale-siltstone-sandstone formations are exposed on the southwestern shore 

of Van Keulenfjorden, and include bituminous shale, limestone, and chert (Dallmann, 1999).  

Svalbard land area is 60% covered by ice sheets and glaciers and the landscape is 

dominated by glacial erosion, with little soil and vegetation (Hjelle, 1993; Onarheim et al., 

2014). The west coast of Spitsbergen is influenced by relatively warm Atlantic water of >3°C 

carried by the West Spitsbergen Current north from the Gulf Stream to the Arctic Ocean 
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(Svendsen et al., 2002). The fjords on the western coast of Spitsbergen, including Van 

Mijenfjorden and Van Keulenfjorden, are ice-free for much of the year and their circulation is 

largely driven by the intrusion of deep, warm (>3° C) Atlantic water under a fresh, cold  (~1° C) 

surface layer from glacial meltwater (Svendsen, et al., 2002; Cottier et al., 2005; Cokelet et al., 

2008).  

Van Mijenfjorden is the longer and wider of the two fjords, and is fed primarily by an 

extensive meltwater stream from Kjellströmdalen, which forms the northern branch at the head 

of the fjord (Fig. 1). The southern branch of the fjord is fed by a small tidewater glacier called 

Paulabreen that is currently retreating, and may have surged between 250 and 600 years ago 

(Rowan et al., 1982). A second large meltwater stream system drains into the northern, central 

part of the fjord through Reindalen. The circulation of the deep water in and out of this fjord is 

partially restricted by Akseløya, a narrow island across the mouth of the fjord (Hjelle, 1993). 

Three sites were selected for coring in Van Mijenfjorden: an inner site located near the mouth of 

the Kjellströmdalen meltwater stream system (VM-In), a middle site (VM-Mid), and an outer 

site located on the fjord side of Akseløya (VM-Out) (Table 1; Fig. 1).  

Van Keulenfjorden is located south of Van Mijenfjorden, and fed by two tidewater 

glaciers at the head: Nathorstbreen and Doktorbreen. Nathorstbreen is a polythermal glacier that 

surged between 2008 and 2016 (Fig. 1; Sund and Eiken, 2010; Kempf et al., 2013; Lovell et al., 

2018). This surging behavior affects sediment transport into the fjord, and past surges in Van 

Keulenfjorden and other fjords can be inferred from distinct sediment lobes on the seafloor 

(Kempf et al., 2013). A shallow (30 m depth) sill at the mouth impedes the intrusion of Atlantic 

water into the fjord, and the fjord is further divided into inner and outer basins by submarine 

moraines (Kempf et al., 2013). Three sites were selected for coring (Table 1; Fig. 1): an inner 
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site within the inner basin (VK-In), and middle (VK-Mid) and outer (VK-Out) sites within the 

outer basin. The VK-In site is located close (within 4 km) to the calving front of the surging 

Nathorstbreen and is likely influenced by heavy sedimentation from glacial activity. VK-Mid is 

located near the shore at the outlet of the land-terminating glacier Penckbreen, and within the 

delta bedform created by meltwater stream input from Penckbreen (Kempf et al., 2013). VK-Out 

is located near the sill at the fjord mouth.  

 

3. Methods  

3.1 Sample collection 

Sediment cores were collected at the stations described above during a sampling 

expedition in early August 2016, aboard the MS Farm. These same stations have been cored 

during previous sampling campaigns, and geochemical datasets from all six sites are available 

for comparison with the results of the current study (Brüchert et al., 2001; Arnosti and Jørgensen, 

2006; Robador et al., 2009; Canion et al., 2014; Wehrmann et al., 2014, 2017). The station 

names used in these other studies are given in Table 1. 

Sediment cores were retrieved using a Rumohr gravity corer (Meischner and Rumohr, 

1974) and core liners that were 60-80 cm long and pre-drilled for pore water sampling. Pore 

water was collected by attaching trace metal-free plastic syringes to Rhizon samplers (Seeberg-

Elverfeldt et al., 2005; Dickens et al., 2007). The Rhizon filtration pore size is 0.2 mm, which 

defines the operational cutoff for dissolved solutes in this study. Pore water aliquots were 

preserved with zinc acetate (2%, w/v) for sulfate concentration measurements, nitric acid (2%, 

v/v) for trace element analyses, and stored headspace-free for dissolved inorganic carbon (DIC) 

analysis. Solid sediment samples were collected from separate Rumohr cores with pre-drilled 
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holes using cut-off syringes of 1.5 cm diameter and immediately frozen. At the inner sites of 

both fjords a third core was extruded for 210Pb analysis, and subsamples were stored at 4°C in 

plastic bags. Sampling resolution for pore water and solid sediment in all Rumohr cores was 2 

cm in the top 20 cm, 4 cm over the next 40 cm, and 8 cm below 60 cm.  

Samples for sulfate reduction rate (SRR) measurements were collected with a Haps corer 

(Kanneworff and Nicolaisen, 1983). The Haps core was subsampled using 2.5 cm diameter 

subcores with ports drilled down the length of the subcore at 1 cm resolution and filled with gas-

impermeable polyurethane (Sikaflex-11FC). Subcoring was carried out using an active suction 

device to avoid compaction of the sediment. 

 

3.2 Radionuclide analysis 

Samples from separate cores were extruded from the core barrel and sliced, then dried 

and powdered for radionuclide analysis. Measurements of 210Pb, 226Ra, and 137Cs were made by 

gamma spectrometry using a Canberra 3800 mm2 LeGe (low energy germanium) gamma 

detector, counting for 3-7 days per sample. 210Pb and 137Cs were determined using the 46 keV 

and 661 keV peaks, respectively, while 226Ra was measured using the 352 keV 214Pb peak. 210Pb 

activities were corrected for self-absorption. Unsupported 210Pb was calculated by subtracting the 

background 226Ra from the total 210Pb. Precisions for 210Pb, 226Ra, and 137Cs analyses were 4.8%, 

1.5%, and 13% respectively. Precision is calculated throughout as the averaged percent relative 

standard deviations of replicate sample measurements. The sediment accumulation rate was 

estimated using three different methods. First, we assumed that the depth of disappearance of 

unsupported 210Pb (43 at VM-In) was equivalent to 5 half-lives of 210Pb, or ~110 years. Using the 

second method, we considered the sediment accumulation rate to be the decay constant of 210Pb 
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(-0.0311 s-1) divided by the slope of the best-fit line of the natural log plot of unsupported 210Pb. 

Finally, the 137Cs peak (~30 cm at VM-In) was assumed to correspond with the year 1964, the 

date of maximum bomb-derived radionuclide fallout in the Northern Hemisphere (Ritchie and 

McHenry, 1990).  

 

3.3 Sulfate reduction rate analysis 

Subcores for SRR analyses were stored at in situ temperature (2°C) for up to 3 days until 

radiotracer injection. The overlying water was removed immediately before radiotracer injection 

began, and the stopper replaced on the top of the core tube. Five microliters of 50 kBq, carrier-

free 35SO4
2- was injected with a glass syringe through the polyurethane ports at 1 cm resolution 

down core. The core was then incubated at in situ temperature (2°C) for 14 h. After incubation, 

the cores were extruded and sliced at 1 cm intervals. The 1 cm sediment intervals were 

immediately placed in 10 ml of 10% zinc acetate and homogenized thoroughly with a vortex 

mixer, then frozen at -20°C.  

 The 35SO4
2- reduced during incubation was recovered from FeS, FeS2, and S0 by cold 

chromium distillation and trapped in 5 mL of 5% zinc acetate as Zn35S (Røy et al., 2014). The 

Zn35S and 35SO4
2- was quantified separately using liquid scintillation counting and the sulfate 

reduction rate was calculated according to Jørgensen (1978). Sulfate reduction rate was 

calculated in nmol cm-3 d-1 using measured porosity (from 0.8 in surface samples to 0.5 at depth; 

data not shown). Earlier precision tests of the 35S-method have shown a relative standard 

deviation in homogenized sediment of ±6% (Jørgensen, 1978), which is smaller than the 

variation in rates observed here due to sediment heterogeneity. 
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3.4 Solid phase analyses 

Sediment samples were homogenized, dried, powdered, and analyzed for total carbon 

(TC) and total nitrogen (TN) contents using a CNS Elemental Analyzer (Thermo EA1112). 

Aliquots of the powdered samples were acidified with 6 M HCl in a sealed reaction chamber, 

and the change in pressure due to the release of CO2 was measured (Jones and Kaiteris, 1983). 

The change in pressure was related to the total inorganic carbon (TIC) concentrations via a 

calibration curve generated by measuring the pressure change following dissolution of known 

masses of pure calcium carbonate. Because of drying, grinding, and extensive exposure to 

oxygen, FeS was likely only present in small quantities in some samples relative to the TIC 

content, so the pressure of released hydrogen sulfide gas was negligible in this analysis. Total 

organic carbon (TOC) was calculated as the difference between TC and TIC. Carbon to nitrogen 

ratios (C/N) were calculated on a mol/mol basis using the total organic carbon and total nitrogen 

contents. The precisions for total N, total C, and TIC analyses were 4.3%, 1.1%, and <1% 

respectively. 

Frozen solid sediment was analyzed for acid volatile sulfide (AVS) and chromium 

reducible sulfur (CRS) content by a two-step distillation following the method described by 

Fossing and Jørgensen (1989). Prior to any solid-phase analyses, sediment in contact with the 

plastic core liner that may have been smeared or oxidized was discarded. Samples were digested 

in a closed distillation system in cold 6 M HCl for 1 hour followed by a boiling acidic 0.5 M 

CrCl2 solution for 2 hours. The released sulfide from AVS and CRS was trapped in separate vials 

containing 5% zinc acetate solution. The ZnS concentration in the traps was determined using 

the Cline spectrophotometric method (Cline, 1969). The precisions for the AVS and CRS 

analyses were 34% and 9%, respectively. The high uncertainty in the AVS measurement is likely 
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due to the extremely low concentrations in some samples, and possibly to uneven distribution of 

FeS in each sample. All solid phase sulfur data are reported in mmole sulfur per gram sediment 

dry weight. 

Further samples of frozen sediment were digested following a sequential extraction 

adapted from Tessier et al. (1979) and Poulton and Canfield (2005) (Table 2). This extraction 

was applied to determine the partitioning of trace elements (As, Co, Cu, Fe, Mn, Mo, Ni, and U) 

between five operationally defined fractions: exchangeable (1 M MgCl2), acid-soluble (1 M 

sodium acetate adjusted to pH 4.5 with acetic acid), easily reducible (1 M hydroxylamine ∙ HCl), 

reducible (50 g/L dithionite buffered with sodium citrate), and oxidizable (8.8 M H2O2). The 

exchangeable fraction includes trace metals adsorbed onto particle surfaces, and possibly any 

associated with highly reactive monosulfides inadvertently oxidized during sample handling. The 

acid-soluble fraction includes elements released from carbonate and the remaining acid-volatile 

sulfide (such as iron monosulfides) (Tessier et al., 1979; Poulton and Canfield, 2005). 

Hydroxylamine ∙ HCl is assumed to target amorphous iron minerals like ferrihydrite and 

lepidocrocite, while dithionite dissolves goethite, hematite, and akagenite, among other similar 

more crystalline Fe minerals (Poulton and Canfield, 2005). The oxidizable step targets organic 

matter and incompletely oxidizes pyrite, possibly dissolving ~40% of solid sulfides (Tessier et 

al., 1979; Gleyzes et al., 2002; Cappuyns et al., 2007; Torres et al., 2013).  

The solid samples (0.5-1 g) were homogenized in 10 mL of extractant, and following 

each step of the extraction, the samples were centrifuged at 4000 rpm for 7 minutes and aliquots 

were collected for further analysis. All solutions were prepared immediately prior to extraction, 

and were trace metal grade except for the dithionite, which was only available as reagent grade 

(Table 2). Reagent blanks were analyzed and used to determine the detection limit for each 
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element. Extracts were analyzed on an Agilent 7500cx quadrupole inductively-coupled plasma 

mass spectrometer (ICP-MS) following 1:30 dilution in trace metal-grade 2% HNO3. Standards 

were prepared from Fluka stock solutions, diluted with trace metal-grade 2% HNO3, and matrix-

matched with 30% of each extraction reagent. A trace metal-grade 2% HNO3 blank was run 

between each sample to monitor the machine background throughout the analysis. 

Reproducibility was determined by repeated analyses of a frozen in-house standard sediment that 

was subjected to the sequential extraction simultaneously with the samples. The reproducibility, 

given as percent relative standard deviation, averaged ~12% across all analyzed elements and 

reagents (see Supplemental Table S1). All solid phase trace element data are reported based on 

dry sediment weight. 

   

3.5 Pore water analyses 

Pore water was analyzed for sulfate and chloride using ion chromatography (IC) on a 

Metrohm 930 Compact IC system with matrix elimination (3.2 mM Na2CO3/1 mM NaHCO3 

eluent). Zinc acetate-fixed samples were diluted 1:280 and analyzed in random order. Standards 

were prepared from Metrohm certified stock solutions (1000 ppm), and IAPSO seawater was 

analyzed as an external standard. Sulfate and chloride concentrations were calculated using 

dilution factors obtained from the measured acetate concentration and the known concentration 

of the zinc acetate solution used to preserve the pore water samples. The precision for the sulfate 

and chloride measurements was 2.3%.  

Dissolved inorganic carbon (SCO2 = CO2 + HCO3
- + CO3

2-) concentration was measured 

using a flow injection analysis (FIA) system based on conductivity detection following Hall and 

Aller (1992). Standards were prepared from reagent grade NaHCO3, and the conductivity 
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response was linear over the relevant concentration range (~1-15 mM DIC). A new standard 

curve was created every two hours to account for drift associated with changes in the ambient 

temperature and pressure. Precision for DIC analysis was 6%. Carbonate concentrations for the 

calculation of carbonate mineral saturation indices were obtained using the program CO2Sys 

version 2.1, with the following input parameters: salinity = 35, temperature = 4o C, pressure = 

1010 dbars, and pH = 7.5 (NBS scale). 

Concentrations of pore water trace elements (As, Co, Cu, Fe, Mn, Mo, Ni, and U) were 

analyzed by ICP-MS using a Thermo Fisher iCAP Qc at Oklahoma State University. Standards 

were prepared with addition of NaCl in 2% trace metal grade HNO3 to match the pore water 

matrix of the diluted samples. The pore water samples were diluted 25-fold with 2% trace metal 

grade HNO3 and analyzed in random order. A standard reference material (NIST SRM 1643f in a 

2% NaCl matrix) was run with each batch as a quality control, and machine drift was corrected 

for using an internal standard run along with the samples. Accuracy was calculated as the percent 

difference between the average of six separate measurements of the standard and the certified 

concentrations for each element (Supplemental Table S2). The analytical precision was 

determined as the percent relative standard deviations of more than ten repeated measurements 

of prepared standards and sample replicates, and was better than 5% for all elements 

(Supplemental Table S2). 

 

4. Results 

4.1 Radionuclide distribution 

At the inner site in Van Mijenfjorden, the calculated sediment accumulation rates are high— 

0.58 cm year-1 based on the depth of the 137Cs peak, 0.61 cm year-1 based on the natural log of 
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the unsupported 210Pb profile, and 0.4 cm year-1 based on the depth of unsupported 210Pb 

disappearance (Fig. 2a-c). At the inner site in Van Keulenfjorden, a sediment accumulation rate 

could not be calculated as the values of unsupported 210Pb and 137Cs are low relative to the other 

site and show no significant depth trend. (Fig. 2d-e). The 137Cs peak was not found within the 

recovered sediment; however, we can calculate a minimum net accumulation rate of 1.1 cm year-

1 if the bottommost sample (which contained the highest concentration of 137Cs recovered at this 

site) is assumed to represent 1964, the year of maximum 137Cs release. This rate can be 

considered a minimum because it is likely that the true 137Cs peak at this site is deeper than 57 

centimeters below the sea floor (cmbsf). 

 

4.2 Sulfate reduction rates 

Sulfate reduction rates at the inner sites average 0.3 nmol SO4
2- cm-3 day-1, and the values 

increase strongly with distance from the glacier to an average of 12.3 nmol SO4
2- cm-3 day-1 at 

VM-Out and 13.6 nmol SO4
2- cm-3 day-1 at VK-Out (Fig. 3). Areal rates of sulfate reduction 

(integrated over the top 14 cm of each core) also demonstrate the increases with distance from 

the glacier in both fjords, with rates of 6.1 nmol cm-2 d-1, 29.1 nmol cm-2 d-1, and 263 nmol cm-2 

d-1 at VK-In, -Mid, and -Out, respectively, and 2.3 nmol cm-2 d-1, 41.1 nmol cm-2 d-1, and 193 

nmol cm-2 d-1 at VM-In, -Mid, and -Out, respectively. Sulfate reduction rates generally increase 

with depth in the sediment at all sites with the exception of the outer stations, which have peaks 

between 3-12 and 2 – 4 cmbsf for VM and VK, respectively (Fig. 3). 

 

4.3 Solid phase carbon, nitrogen, sulfur, and trace element composition 
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The TOC content in both fjords is between 0.4 and 3.0 wt. % with differences of <1 wt % 

between the averages of the sites (Table 3; Supplemental Figure S1). The average C/N ratios (in 

mol mol-1) in the fjords range from 20.4 ± 0.5 at the inner site to 16.4 ± 1.4 at the outer site in 

Van Mijenfjorden and from 18.7 ± 1.5 (VK-In) to 17.8 ± 1.0 (VK-Out) in Van Keulenfjorden 

(Table 3).   

Fe-monosulfide contents, measured as acid-volatile sulfide (AVS), are very low at both 

inner sites, with an average of 0.01 mmol g-1 at VM-In and 0.02 mmol g-1 at VK-In (Fig. 4b, e). In 

both fjords, AVS content increases with distance from the glacier and with depth at each site, 

reaching maxima of 17.1 mmol g-1 at 43 cmbsf at VM-Out and 20.1 mmol g-1 at 60 cmbsf at VK-

Out (Fig. 4b, e). In Van Keulenfjorden, contents of chromium-reducible sulfur (CRS; FeS2 and 

S0), predominantly pyrite, are highest (up to 75 mmol g-1) in the inner and middle sites, and show 

no consistent trends with depth at any sites except for a general decrease with depth at the outer 

site (Fig. 4f). The CRS contents in the inner and middle sites in Van Mijenfjorden are roughly a 

third of those at the corresponding sites in Van Keulenfjorden (Fig. 4c).  

Total extractable solid Fe contents (calculated as the sum of all fractions) average 15 ± 3 

mg g-1, with 47-70% in the reducible (dithionite) fraction (Fig. 5). There is a slight decrease in 

the reducible Fe contents with distance from the glacier, with averages of 64% of the total 

extractable Fe at the inner sites and averages of ~55% at the outer sites in both fjords. Acid-

soluble (sodium acetate) Fe shows a slight increase with distance from the glacier and with depth 

at the middle and outer sites in both fjords. Additionally, the Fe in the acid-soluble fraction that 

is attributable to Fe in AVS (AVS-Fe; assumed stoichiometry FeS) increases from average 

values of 0.03% (VM) and 0.06% (VK) at the inner sites to averages of 11% (VM) and 9% (VK) 

at the outer sites. The percent of AVS-Fe in the acid-soluble fraction also increases with depth, 
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with the largest values in each fjord of 41% at 39 cmbsf at VM-Out and 20% at 76 cmbsf at VK-

Out. Solid phase Fe enrichments in the easily reducible (hydroxylamine ∙ HCl) and reducible 

fractions are observed in the uppermost 5 cm at the middle and outer stations in both fjords (Fig. 

5b-c, e- f). In the exchangeable (MgCl2) fraction, Fe is not present above the detection limit 

(Supplemental Table S2).  

Total extractable solid phase Mn contents range from 0.13 to 1.5 mg g-1, with the highest 

contents in the acid-soluble fraction (Fig. 6; 22%-72% of the total). Compared to the high 

percentage of Fe in the reducible fraction, contents of Mn in the reducible fraction are low, 9% to 

45% of the total extractable Mn. Distinct solid phase enrichments in the surface sediments at the 

middle and outer sites are visible predominantly in the acid-soluble phase the uppermost 2 cm 

(Fig. 6b-c, f).  

In both fjords, Co and Ni show solid phase surface enrichments primarily in the reducible 

fraction (Figs. 7 and 8). The exchangeable fraction accounts for up to 14% and 17% of the total 

solid contents of Co and Ni, respectively, with overall higher exchangeable contents in Van 

Keulenfjorden (Figs. 7 and 8). Both Co and Ni have higher oxidizable contents in Van 

Keulenfjorden than Van Mijenfjorden (Figs. 7 and 8). Overall there is more Ni in the solid phase 

(Fig. 8; average 15.2 mg g-1) than Co in the solid phase (Fig. 7; average 8.6 mg g-1). 

Solid phase Cu is predominantly (38% to 60% of the total) in the acid-soluble fraction, 

with 10%-25% in the easily reducible and 14%-39% in the reducible fractions (Fig. 9). At the 

middle and outer stations of both fjords, a Cu enrichment in the acid-soluble and reducible 

fractions is visible in the uppermost 10 cm (Fig. 9b-c, e-f). 

Solid phase U is primarily in the exchangeable fraction (44 - 70% of the total extractable) 

at all sites except VM-In and VM-Mid, where it is divided between the acid soluble (34 – 46% of 
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total) and reducible (~26% of total) fractions (Fig. 10). The percentage of solid U in the 

exchangeable fraction increases moving away from the glacier in both fjords, while the 

percentages in all the other fractions decrease. The total extractable U also increases with 

distance from the glacier in both fjords, with averages from 0.13 mg g-1 at VK-In and 0.10 mg g-1 

at VM-In to 0.41 mg g-1 at VK-Out and 0.25 mg g-1 at VM-Out (Fig. 10). The percentage of solid 

U in the exchangeable fraction also generally increases with depth, particularly in the outer sites 

where it reached maxima of 0.48 mg g-1 at 39 cmbsf at VM-Out and 0.60 mg g-1 at 12 cmbsf at 

VK-Out (Fig. 10). 

The average total extractable contents of Mo are 1.3 mg g-1 at VK-In and -Mid, and 2.2 

mg g-1 at VM-In (Fig. 11a, d-e). At these three sites, solid phase Mo is primarily in the reducible 

fraction (~62% of total), and Mo contents show no significant variability over depth, similar to 

both the solid Fe and Mn profiles (Fig. 11a, d-e). At VM-Mid, VM-Out, and VK-Out, solid 

phase Mo is strongly partitioned between the surface ~4 cm and the deeper sediment, with higher 

concentrations in the easily reducible and reducible fractions at the surface and lower 

concentrations at depth relative to the concentrations at VK-In, VK-Mid, and VM-In (Fig. 11c, e-

f). There is a significant contribution of oxidizable Mo to the total amount of Mo at all sites (4% 

- 25% of total); in the acid-soluble fraction Mo is absent. 

Solid phase As is primarily in the reducible fraction (Fig. 12; 56-88% of total extractable 

As). Surface enrichments in solid phase As are visible in VM-Mid, VM-Out, and VK-Out (Fig. 

12b-c, f). These enrichments are largely in the reducible phase, but in the outer sites there are 

also higher As contents in the easily reducible and acid-soluble fractions relative to the inner 

sites (Fig. 12a, d). Due to high background levels of As in the magnesium chloride solution, As 
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concentrations in the exchangeable fraction are below detection limit in nearly all of the samples. 

The oxidizable fraction contains low but measurable (0.002 – 0.2 mg g-1) As concentrations. 

 

4.4 Pore water chloride, sulfate, inorganic carbon, and trace element concentrations  

At all sites, chloride concentrations stay constant with depth at ~ 530 - 540 mM (seawater 

value ~ 550 mM; Supplemental Figure S2). At the middle and outer sites of both fjords, pore 

water sulfate concentrations decrease by 0.5 - 4.1 mM below the typical seawater value (~28.2 

mM) over the depth of the core (Fig. 4a, d). At both of the inner sites, pore water sulfate 

increases over the depth of the core by 1.1 - 1.3 mM above the surface value (Fig. 4a, d). 

Decreases in DIC are observed at VM-In from 2462 mM in the uppermost sample to a minimum 

of 510 mM at 41 cmbsf (Supplemental Table S3). All other sites show increases in DIC with 

depth from ~2000-3000 mM in the surface to 7000-9000 mM at depth (data not shown). 

At the inner site in Van Mijenfjorden, dissolved Fe concentrations increase below 5 

cmbsf, peaking at 1460 mM at 40 cmbsf, while the middle and outer sites show an increase in the 

surface 0-20 cm, then reach a constant concentration in deeper sediment regions (300-400 mM) 

(Fig. 5a-c). The inner site in Van Keulenfjorden, in contrast, has low dissolved Fe concentrations 

(0-16 mM) in the top 0-50 cm, with an increase to 282 mM at the bottom of the core (Fig. 5d). 

The maximum concentrations at the middle and outer sites are 655 mM at 19 cmbsf and 359 mM 

at 12.5 cmbsf, respectively (Fig. 5e-f). At the inner site in Van Mijenfjorden, dissolved Mn 

shows a large peak of 780 mM at 9 cmbsf (Fig. 6a). At the middle site, there is a small peak of 

112 mM at 2 cmbsf depth followed by a gradual increase to values of 89-93 mM below 55 cm 

depth (Fig. 6b). At the outer site, dissolved Mn concentrations increase from 22 to 46 mM over 

the top 10 cm and remain relatively constant below (Fig. 6c). In Van Keulenfjorden, the pore 
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water Mn profile has a peak of 160 mM around 16 cmbsf at the inner site, and a peak of 259 mM 

at 5 cmbsf depth at the middle site (Fig. 6d-e). At the outer site in Van Keulenfjorden, the 

surface sample (~0.5 cmbsf) has the highest concentration of pore water Mn with 70 mM, below 

which concentrations remain between 20 and 36 mM (Fig. 6f).  

Pore water Co and Ni peaks are nearly aligned with pore water Mn peaks at all sites, with 

maximum concentrations of 0.090-0.340 mM for Co and 0.11-0.23 mM for Ni in the topmost 5 

cm at the middle and outer sites of both fjords (Figs. 7 and 8). At VK-In and VK-Mid, pore water 

Co and Ni peaks also align with the pore water Fe peaks at 60 cmbsf and 23 cmbsf, respectively 

(Figs. 7 and 8, d-e). At VM-In, the decrease in pore water Co and Ni below the Mn reduction 

zone is not as steep as the decrease in pore water Mn (Figs. 7a, 8a). Ni is below detection limit in 

the pore water below 31 cmbsf at VK-Mid and below 11 cmbsf at VM-Mid (Fig. 8b, e), while at 

the outer sites it is below detection limit by 23 cm at VK-Out and by 9 cm at VM-Out 

(Supplemental Table S2; Fig. 8c, f).  

Pore water Cu is above the detection limit (0.14 nM) at both inner stations, but with 

higher concentrations in Van Mijenfjorden— up to 0.5 mM in VM-In and 0.3 mM in VK-In 

(Supplemental Table S2; Fig. 9a, d). The observed pore water Cu concentrations at VK-In, VM-

In, and VM-Mid are well above Arctic seawater values (Fig. 9a-b, d; 0.005 mM average, 0.017 

mM maximum; Tovar-Sánchez et al., 2010). Pore water Cu is also well above seawater values at 

VM-Mid, with an average concentration of 0.2 mM (Fig. 9b). At VM-Out, dissolved Cu is at the 

detection limit (Fig. 9c). In Van Keulenfjorden, pore water Cu is present at low concentrations 

(average 0.3 mM) in the upper 12 cm at the middle site and in the upper 6 cm at the outer site 

(Fig. 9e-f). The Cu concentration profiles are variable at all sites with concentrations above the 

detection limit.  
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There is a decrease in pore water U with depth at all fjord stations except VK-In (Fig. 

10). Pore water concentrations in the surface sediments (~0.006 mM) are lower than seawater 

values based on the salinity of the deep water in the fjords (0.014 mM; Ku et al., 1977) and 

decrease to values of 0.001-0.003 mM at depth (Fig. 10). The inner site in Van Keulenfjorden 

was the only location to exhibit an increase in pore water U with depth, from 0.008 mM at the 

surface to ~0.016 mM below 40 cm depth (Fig. 10d).  

The surface sediment at most sites contains pore water Mo concentrations ranging from 

average seawater concentration (0.122 mM; Tovar-Sánchez et al., 2010) down to ~0.09 mM (Fig. 

11). At VM-In, VK-In, and VK-Mid, pore water Mo is removed within and just below the pore 

water Mn peak to 0.03-0.05 mM (Fig. 11a, d-e). At VM-In and VK-Mid, Mo is released within 

the pore water Fe peak (37 cmbsf at VM-In and 27 cmbsf at VK-Mid) with maximum 

concentrations of 0.2 mM at VM-In and 0.25 mM at VK-Mid (Fig. 11a, e). Below the surface 

peaks (uppermost 2-6 cm) in pore water Mo at VK-Out, VM-Mid, and VM-Out, Mo is steadily 

removed from the pore water down to seawater value or slightly lower (Fig. 11b-c, f).  

Arsenic is released into the pore water in the zone of Fe release at all sites, with low 

surface pore water concentrations between 0.01 and 0.08 mM and increasing to maximum 

concentrations of 0.71 mM at depth (Fig. 12). At the inner sites, the maximum dissolved As 

concentration is 0.21 mM and 0.12 mM in the deepest sample at VM-In and VK-In, respectively 

(Fig. 12a, d). At the outer sites, the As maxima are 0.71 mM at 35 cmbsf in VM-Out and 0.61 

mM at 12.5 cmbsf in VK-Out (Fig. 12c, f). At the middle and outer sites, dissolved As remains 

high or increases at depth, below ~40 cm depth (Fig. 12b-c, e-f).  

 

5. Discussion 
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5.1 Fjord physical dynamics  

Scatter in the unsupported 210Pb and 137Cs profiles from VM-In (see Fig. 2) is likely 

influenced by non-steady state sediment accumulation in the fjord. This profile may also suggest  

vertical mixing at this site, most likely caused by bioturbation— glacial activity is unlikely to 

physically impact the sediments of Van Mijenfjorden given the distance between the glacier 

terminus and the fjord. Similar evidence of non-steady state conditions, mixing, and high 

sediment accumulation rate was observed in 210Pb and 137Cs profiles from Van Mijenfjorden and 

other Svalbard fjords (Mitchell et al., 1999). 

The sediment accumulation rate calculated at VK-In (1.1 cm year-1) is likely to be an 

underestimate given that the true 137Cs peak (if present) may be much deeper than the bottom of 

the core. Although the accumulation rate at this site could not be reliably calculated, the variable 

small quantities of excess 210Pb (~0.5 dpm g-1) and 137Cs (~0.2 dpm g-1) with no clear depth 

trend in either parameter across the depth of the core suggest rapid deposition of old material 

underexposed to atmosphere with intermittent mixing of more recently exposed particles 

containing excess 210Pb and 137Cs (Appleby and Oldfield, 1978; Ritchie and McHenry, 1990; 

Crusius and Anderson, 1995). This rapid sediment deposition and mixing in Van Keulenfjorden 

may have been caused by the recent surge of the tidewater glacier Nathorstbreen and the 

associated increase in sediment discharge, iceberg scouring, and bedform formation and 

slumping (Solheim and Pfirman, 1985; Gilbert et al., 2002; Sund and Eiken, 2010; Kempf et al., 

2013; Lovell et al., 2018). The middle site in Van Keulenfjorden (VK-Mid) also shows evidence 

of disturbance or rapid sedimentation in the uppermost 10-20 cm, based on 210Pb and the 137Cs 

data collected during the same sampling cruise by Buongiorno et al. (2019). This disturbance at 

VK-Mid could have been caused by the surge of Nathorstbreen, or sediment input from the 
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meltwater stream of Penckbreen, a land-terminating glacier near the sampling site (Fig. 1). Based 

on a recent swath bathymetry map of the seabed in this fjord, we estimate that our sampling site 

VK- Mid lies near the edge of a delta, and thus may be subject to the same rapid sedimentation 

or bedform slumping that affects VK-In (Kempf et al., 2013). Although we did not analyze 210Pb 

and 137Cs at the middle or outer sites, the sediment accumulation rates in both fjords likely 

decrease from head to mouth of the fjord given that the primary source of sediment is the glacier 

at the head. Such head-to-mouth sedimentation gradients have been previously observed in other 

fjords on Svalbard (Svendsen et al., 2002; Zaborska et al., 2006; Szczuciński et al., 2009).  

Given that the pore water chloride concentrations at all sites in both fjords are roughly 

constant and close to seawater value (Supplemental Figure S2), it is likely that the deep water in 

the fjords is well-mixed and sourced from intruding North Atlantic Deep Water, while fresh 

water from glacier melt flows out of the fjord as a stratified surface layer (see Section 2). Thus, 

despite the restrictive sills at the fjord mouths and the freshwater glacier influence, the bottom 

water salinity at all sites appears to be similar. 

 

5.2 Carbon-driven Sulfur Biogeochemistry 

At the inner fjord sites, sulfate reduction rates are very low and little accumulation of 

AVS is observed in the sediment (Fig. 3; Fig. 4). At the outer sites in both fjords, increases in 

both sulfate reduction rates and AVS contents at depth (Figs. 3 and 4b, e) suggest that with 

higher sulfate reduction rates, more hydrogen sulfide is subsequently trapped as Fe-monosulfide 

minerals (Canfield, 1989). At these sites we also observed decreases in pore water sulfate with 

depth that could not be explained by a change in salinity (Supplemental Figure S2); rather, the 
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sulfate depletions are further indication of removal of sulfide to AVS following sulfate reduction 

(Jørgensen, 1977; Canfield, 1989). 

We suggest that the cross-fjord (head-to-mouth) trend of increasing sulfate reduction 

rates with distance from the glacier is primarily controlled by the availability (here defined as the 

concentration per unit volume of sediment) and reactivity of organic carbon in the sediments 

(Jørgensen, 1982, 1977). At all sites in Van Keulenfjorden and Van Mijenfjorden, the total 

organic carbon (TOC) contents are in a similar range; however, the ratios of organic carbon to 

nitrogen (C/N) indicate that the organic carbon source changes across the fjords (Table 3). 

Terrestrial organic matter has a higher C/N (>20) compared to marine (6-9) organic matter, 

driven by the C/N of marine phytoplankton (~6.6) (Redfield, 1934; Müller, 1977; Prahl et al., 

1980; Meyers, 1990; Schmidt et al., 2010). Bulk terrestrial OC, particularly ancient or petrogenic 

material, is less bioavailable; thus, sediments with an OC pool containing a greater terrestrial 

component is expected to have lower rates of remineralization (Hedges and Keil, 1995; Hedges 

et al., 1997; Prahl et al., 1997). Our observed C/N values indicate a contribution of bulk 

terrestrial organic matter to the total carbon pool at all sites, which is in good agreement with 

values obtained in previous studies in Svalbard fjords (10-30; Kim et al., 2011; Bourgeois et al., 

2016; Cui et al., 2016; Koziorowska et al., 2016). Decreasing C/N ratios with distance from the 

glacier in both fjords suggest higher contents of labile, marine OC, primarily marine 

phytoplankton, near the mouth of the fjord. Other studies have found similar marine OC 

increases near the mouths of other Spitsbergen fjords based on carbon isotopes and lipid 

biomarkers (Kim et al., 2011; Kuliński et al., 2014; Bourgeois et al., 2016; Cui et al., 2016; 

Koziorowska et al., 2016).  
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An increase in pore water sulfate concentration with depth at the inner site in Van 

Mijenfjorden (Fig. 4a, d) indicates an additional source of sulfate to the system, which could be 

the oxidation of detrital sulfide minerals such as pyrite. The pyrite pool likely contains a large 

detrital component in both fjords, given that contents of chromium-reducible sulfur (i.e. pyrite) 

are highest closest to the glacier and exhibit no increases at the sites with higher sulfate reduction 

and AVS concentration (Fig. 4c, f). Glacially-derived detrital pyrite is delivered to the Svalbard 

fjord sediments from glacial erosion (Brüchert et al., 2001; Wehrmann et al., 2014, 2017), and 

microbial and abiotic processes in the subglacial and proglacial environment can accelerate the 

weathering and oxidation of pyrite grains in bedrock (Chillrud et al., 1994; Sharp et al., 1999; 

Montross et al., 2012; Harrold et al., 2016). In marine sediments, pyrite can be oxidized by 

nitrate, MnO2, and in some cases Fe(III)-OHO (Luther et al., 1982; Aller and Rude, 1988; 

Schippers and Jørgensen, 2002), and in the Svalbard fjords these oxidants are delivered at high 

rates in glacial melt, potentially allowing the pyrite oxidation to proceed through both biotic and 

abiotic pathways using both oxygen and metal oxides as oxidants in the sediments (Wehrmann et 

al., 2014, 2017).  

There are differences in pyrite contents between the two fjords that we attribute to the 

different forms of glacial input in each fjord. The catchments of the fjords both contain shale, 

coal, and other pyrite-bearing rock types (Table 1; Dallmann, 1999) and, thus, variation in 

bedrock lithology and sediment source does not readily explain the difference in the observed 

pyrite contents. However, the transport mechanism of the bedrock material to the fjords varies 

greatly. Van Mijenfjorden is primarily fed by extensive meltwater stream systems in 

Kjellströmdalen and Reindalen, while Van Keulenfjorden is fed by two tidewater glaciers, 

Nathorstbreen and Doktorbreen, calving directly into fjord waters (Fig. 1). Proglacial meltwater 
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stream material is altered through physical abrasion, oxidation of reduced sulfur, iron, and 

manganese, consumption of nutrients by microorganisms, and precipitation of mineral phases 

(Anderson et al., 2000; Wadham et al., 2001; Cooper et al., 2002). These processes, including 

pyrite oxidation, are also known to occur in the subglacial environment (Wadham et al., 2004) 

and therefore likely influence the glacial sediment delivered to both Van Mijenfjorden and Van 

Keulenfjorden. However, we hypothesize that transport in proglacial and riverine zones along 

Van Mijenfjorden introduces an additional processing step and allows further oxidation and 

weathering of glacial material, leading to the observed lower CRS contents in Van Mijenfjorden 

compared to Van Keulenfjorden sediments.  

The proglacial oxidation of pyrite and other reduced iron-sulfur compounds may produce 

highly reactive nanoparticulate or amorphous Fe-OHO phases (Hawkings et al., 2018; Raiswell 

et al. 2018) and contribute to further oxidation of pyrite following deposition in the fjord 

sediments. Additionally, physical abrasion during transport in the meltwater stream may generate 

oxide and pyrite particles that are smaller in size and have greater reactive surface areas, 

increasing reaction rates in the fjord sediments. This hypothesis of increased pyrite/oxide 

reactivity following transport in proglacial streams is supported by the increases in pore water 

sulfate with depth at VM-In (Fig. 4a).  

 While in situ pyrite oxidation likely also occurs at VK-In, rapid and possibly pulse-like 

deposition of sediment from the glacier inhibits excess sulfate accumulation in the pore water 

while simultaneously refreshing the detrital pyrite supply. Thus, it is difficult to disentangle the 

effects of pro-glacial weathering on in situ pyrite oxidation from the effects of variable 

accumulation rates in the two fjords. Under the premise of constant source contributions during 

sedimentation (see Section 2), the overall lower CRS contents in Van Mijenfjorden (Fig. 4c, f) 
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do however provide evidence for the occurrence of pyrite oxidation in the meltwater streams 

feeding Van Mijenfjorden in contrast to the glacial systems feeding Van Keulenfjorden. 

 

5.3 Iron and manganese cycling 

The observed Fe and Mn pore water profiles are governed mainly by the abiotic and 

biotic reductive dissolution of Fe- and Mn-OHO minerals in the anoxic regions of the sediment 

(Lovley, 1993; Postma, 1985; Burdige and Nealson, 1986; Burdige, 1993) and the re-oxidation 

of mobilized Fe2+ and Mn2+in the oxic surface layers (Burdige, 1993; Aller, 1994). In the outer 

regions of both fjords, the pore water Fe gradient is closer to the sediment surface, suggesting 

overall more reducing conditions in the sediment compared to the inner sites where increases in 

pore water Fe are observed deeper in the sediment and oxygen penetration is likely deeper. These 

conditions in the outer regions may be caused by the greater availability of organic carbon (i.e. 

higher concentration of labile organic carbon per unit volume), as discussed above (Section 5.2). 

In these fjords, the dilution of the labile organic carbon by unreactive glacial flour closer to 

glacial sources appears to result in the inverse correlation of volumetric reaction rate with 

accumulation rate (Froelich, 1979; see Aller, 2014 and references therein). Additionally, the 

proximity of the Fe reduction zone to the sediment surface could be influenced by the lower 

overall accumulation rates in the outer regions of the fjord, which allow more time for organic 

matter degradation and establishment of redox gradients near the sediment surface. At VK-Out 

and VM-Out, decreases in the easily reducible and reducible fractions with depth align with an 

increase in pore water Fe concentration, suggesting that these pools are an important source of 

pore water Fe in the deep sediment. At the surface, mobilized Fe2+ is re-oxidized and forms the 

observed solid phase surface Fe enrichments in the easily reducible and reducible fractions at the 
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middle and outer sites in both fjords (Fig. 5; Burdige, 1993; Aller, 1994). These surface 

enrichments may also include a contribution of benthically recycled Fe-OHO laterally advected 

from adjacent sediments (Scholz et al., 2014a, 2014b; Wehrmann et al., 2014).  

At the middle and outer sites (VM-Mid, VM-Out, VK-Out), relatively constant pore 

water Fe concentrations at depth co-occurring with sulfate reduction suggest a balance between 

the rate of Fe2+ production via biotic and abiotic Fe(III) reduction, including the reduction of Fe-

OHO by hydrogen sulfide,  and Fe2+ removal by interaction with sulfide (Jørgensen and Nelson, 

2004). The accumulation of AVS at these sites is evidence of the removal of Fe(II) into iron 

monosulfides. The abundance of reactive Fe oxides causes hydrogen sulfide and sulfur 

intermediate phases to be rapidly turned over at low concentration as they are shuttled between 

sulfate and solid metal sulfides (Wehrmann et al., 2017).   

 Solid and aqueous Mn data are also consistent with overall more reducing sediments at 

the outer sites in both fjords. Microbial Mn reduction is stimulated by the same factors that 

increase Fe reduction; however, the removal of Mn(II) from the pore water is controlled by Fe 

rather than sulfide. There are no discernable pore water Mn peaks at VM-Out and VK-Out, 

indicating that the Mn reduction zone and pore water peak are compressed to within the topmost 

0-1 cm (Fig. 6c, f). Due to this compression, a fraction of the diagenetically mobilized Mn may 

escape to the water column in the outer regions of the fjord, followed by transport out of the 

fjord and sedimentation on the adjacent continental shelf (Shaw et al., 1990; Burdige, 1993; 

Thamdrup et al., 1994; März et al., 2011; Richard et al., 2013; Wehrmann et al., 2014). At the 

sediment surface, another fraction of the mobilized Mn(II) re-oxidizes within the sediment, 

forming the observed solid phase Mn enrichments in the surficial sediments at the middle and 

outer sites in both fjords (Fig. 6). The enrichments occur predominantly in the acid-soluble 
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phase. Although the acid-soluble step was designed to target Fe-carbonate minerals (Poulton and 

Canfield 2005), it is unlikely that the acid-soluble Mn fraction contains exclusively Mn-

carbonate. The pore water in this region of the sediment is undersaturated with respect to 

rhodochrosite (MnCO3; assuming pH ~7.5), and the measured TIC (i.e. carbonate) contents are 

low relative to the recovered Mn content and constant with depth (see Supplemental Figure S1); 

therefore, the acid-soluble Mn fraction likely contains Mn from other phases, such as a tightly 

bound surface-adsorbed fraction that was not desorbed during the extractable step (a magnesium 

chloride wash). Aqueous Mn(II) is removed from the pore water at depth at the middle and outer 

sites (Fig. 6), potentially due to the pool of reducible Fe present, as Mn(II) can be abiotically 

oxidized by Fe(III) (Burdige, 1993).  

Interestingly, Fe and Mn cycling at the inner sites may be influenced by carbonate 

mineral (e.g. siderite, kutnahorite, and rhodochrosite) precipitation due to the high pore water 

carbonate and dissolved metal concentrations (Suess, 1979; Aller and Rude, 1988). Based on 

calculated saturation states, the pore water at VM-In is supersaturated with respect to both 

siderite (FeCO3) below 17 cmbsf, and rhodochrosite between 7-27 cmbsf (Supplemental Table 

S3).  

The inner site in Van Mijenfjorden experiences Fe release at ~15 cmbsf and Mn release at 

~4 cmbsf, while the inner site in Van Keulenfjorden exhibits only some Mn release below ~15 

cm depth, and no Fe release above ~55 cmbsf (Figs. 5 and 6). Pore water concentrations of both 

metals are also much higher at VM-In relative to VK-In. This may reflect the pulse-like 

deposition of glacial material associated with the glacier surge in Van Keulenfjorden, followed 

by slow re-establishment of reducing fronts. This is supported by our radionuclide data (see 
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Section 5.1) and by comparing the findings of Wehrmann et al. (2014), who sampled VK-In in 

2011 and found dissolved Fe and Mn profiles similar to what we observe in Van Mijenfjorden. 

Van Mijenfjorden has higher total extractable solid phase Fe and Mn at the inner site, 

relative to the inner site in Van Keulenfjorden (Figs. 5 and 6). This difference in Fe and Mn 

contents may be explained by the difference in meltwater stream versus tidewater glacier input in 

the two fjords. We propose that the additional oxidation and weathering of detrital sulfides 

occurring within the riverine and proglacial zone feeding Van Mijenfjorden (discussed in Section 

5.2) may concentrate and transport Fe and Mn in more reactive forms to the fjord sediments 

(Chillrud et al., 1994; Anderson et al., 2000; Cooper et al., 2002). In Van Keulenfjorden, 

material entering at the head of the fjord lacks this extra processing due to direct sediment 

delivery via the surge-type tidewater glacier.  

 

5.4 Trace element diagenesis 

The trace elements investigated in this study (As, Co, Cu, Mo, Ni, and U) are redox 

sensitive and/or interact with redox sensitive elements such as Fe, Mn, and S. Therefore, their 

behaviors in the sediment differ across the fjord axis as redox conditions and rates of 

dissimilatory metal and sulfate reduction change in response to increased availability of labile 

marine organic carbon near the fjord mouth. In the following sections, trace elements will be 

grouped according to the strength of their interactions with Fe and Mn cycling (Co and Ni), 

sulfur cycling (Cu), or both (As, Mo, and U) at the investigated sites. 

 

 5.4.1. Cobalt and Nickel: Fe- and Mn-linked 
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The alignment between Co, Ni, and Mn pore water peaks at all sites (Figs. 6-8) indicates that 

Co and Ni are tightly correlated and that both are released during reductive Mn-OHO dissolution 

in these fjords. Such close associations between Co, Ni, and Mn have been well-described in 

high latitude and other marine settings, and likely occur because Co and Ni adsorb onto or 

incorporate into Mn-OHO (Shaw et al., 1990; Manceau et al., 1992; Achterberg et al., 1997; 

Peacock and Sherman, 2007; März et al., 2011; Swanner et al., 2014; Meinhardt et al., 2016). In 

the fjord sediments, Co and Ni also exhibit pore water increases in zones of Fe reduction 

spatially separated from Mn reduction (VK-In and VK-Mid), suggesting that both Co and Ni also 

associate with Fe-OHO. This is particularly interesting for Co, because the relationship of Co to 

Fe has been less thoroughly described than the relationship of Co to Mn (Achterberg et al., 1997; 

Gunnarsson et al., 2000; Stockdale et al., 2010; Swanner et al., 2014). In contrast, there are many 

examples of the association between Ni and Fe-OHO in aquatic settings (Achterberg et al., 1997; 

Zegeye et al., 2012; Eickhoff et al., 2014; Robbins et al., 2016). Similar to Fe and Mn, solid 

phase Co and Ni are enriched in the easily reducible and reducible fractions in the surface at the 

outer sites in both fjords.   

The behavior of Co and Ni also differs between the two fjords. Compared to Van 

Mijenfjorden, Van Keulenfjorden has higher Co and Ni contents in the oxidizable and 

exchangeable fractions, along with generally higher Ni and Co pore water concentrations (Figs. 7 

and 8). The oxidizable step of the extraction likely targeted a significant fraction of pyrite (up to 

~40%), which typically contains substantial amounts of Co and Ni incorporated in the mineral 

(Morse and Luther III, 1999; Stockdale et al., 2010; Gregory et al., 2015). Thus, the elevated 

values of oxidizable Co and Ni found in Van Keulenfjorden sediments are likely related to the 

higher pyrite contents in the Van Keulenfjorden sediments (Fig. 4) due to direct delivery from 
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the tidewater glacier. In Van Keulenfjorden, the exchangeable fraction accounts for 6% and 7% 

of the total extractable quantity of Co and Ni respectively, while in Van Mijenfjorden the 

exchangeable fraction accounts for 4% of both Co and Ni. This difference, though small, may 

indicate that the crystalline Fe and Mn oxides delivered by the tidewater glacier hold more 

adsorbed Co and Ni than those that are processed in the Van Mijenfjorden meltwater stream 

system prior to entering the fjord. Overall it seems that due to the delivery of large amounts of 

Fe- and Mn-OHO directly from the tidewater glacier, without additional processing in the 

proglacial zone, there is more early diagenetic cycling of Co and Ni in Van Keulenfjorden than 

in Van Mijenfjorden, especially at VK-Mid and VK-Out where the pore water concentrations are 

higher and the surface solid phase enrichment is larger relative to VM-Mid and VM-Out.  

 

5.4.2. Copper: Sulfur linked 

 The head-to-mouth fjord trend of decreasing pore water Cu concentrations (Fig. 9) is 

likely related to higher sulfate reduction rates at the middle and outer sites. In anoxic, sulfate 

reducing environments, Cu(II) is reduced by sulfide to Cu(I), subsequently precipitates in sulfide 

minerals (Calvert and Pedersen, 1993; Öztürk, 1995; Zaggia and Zonta, 1997; Morse and Luther 

III, 1999), and can form a large variety of Cu sulfide minerals at a lower sulfide concentration 

than is required to form Fe-sulfide minerals (Pattrick et al., 1997; Morse and Luther III, 1999). 

Therefore, Cu is more readily removed from the pore water at increasing distances from the 

glacial input, where sulfate reduction rates are higher. The presence of Cu in the pore water at 

VM-Mid seems to counter this trend, but may be due to a separate process related to solid phase 

sulfides, as described below.  
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The scatter in pore water Cu concentrations is unlikely to be caused by the proximity of the 

measured concentration to the detection limit, because other elements with similar detection 

limits such as Ni (with a detection limit of 0.16 nM; Supplemental Table S2) were measured in 

the same concentration ranges (up to 0.5 mM) and do not show the same degree of scatter. This 

scatter may instead be related to a heterogeneous distribution of dissolved Cu sources and sinks 

such as sulfide minerals and recalcitrant organic matter (Shaw et al., 1990; Widerlund, 1996; 

Skrabal et al., 2000; Caetano et al., 2003; Audry et al., 2006). Thus, the turnover time, t, of 

aqueous Cu is faster than the rate of diffusional exchange between our sampled depth intervals 

(2-4 cm), which can be calculated (based on a porosity of 0.75 and a Cu diffusion coefficient of 

3.2 x 10-6 cm2 s-1 and transport scales of 2-4 cm) to be t~20 days (Iversen and Jørgensen, 1993; 

Jørgensen, 1993; Schulz and Zabel, 2006). 

Copper may be delivered to the sediment in association with both Fe- and Mn-OHO (Fig. 9; 

Fernex et al., 1992; Peacock and Sherman, 2004; Sherman and Peacock, 2010). However, given 

that the majority of the solid phase Cu is in the acid-soluble fraction (Fig. 9), it is likely that Cu 

primarily associates with Mn-OHO (Sherman and Peacock 2010; Little et al., 2015), as the acid-

soluble fraction also contains the highest Mn contents (Fig. 6).  

At the middle and outer sites in both fjords, solid phase Cu decreases below the surface 2-4 

cm as it is transferred, through a transient pore water reservoir not detectable with our sampling 

methods, to another solid phase pool that was not targeted in our extraction. Cu-S minerals such 

as covellite (CuS) and chalcocite (Cu2S) are poorly soluble in HCl-based extractions, and 

chalcocite in particular is generally leached using sulfuric acid-based techniques (Cheng and 

Lawson, 1991; Cooper and Morse, 1998). Small increases in oxidizable Cu at depth indicate that 

some Cu is removed to pyrite or other Cu-S minerals that were dissolved in the oxidizable step. 
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At the inner sites, this depletion does not occur due to low sulfate reduction rates and lack of 

sulfide mineral formation, and therefore solid phase Cu contents remain high at depth.  

Higher pore water Cu concentrations at VM-Mid relative to VK-Mid may reflect the 

influence of oxidizing detrital pyrites, which likely either contain Cu inclusions or co-occur with 

Cu-sulfide minerals (Huerta-Diaz and Morse, 1992; Sun and Püttmann, 2000; Gregory et al., 

2015). Higher aqueous Cu concentrations due to an additional source from detrital pyrites would 

support our hypothesis of greater delivery of partially oxidized and more reactive sulfide 

minerals in meltwater stream sediments in Van Mijenfjorden.  

 

5.4.3 Uranium, Molybdenum, and Arsenic: Fe-Mn-S linked 

The removal of U from the pore water at all sites (except VK-In, discussed below) is 

likely due to reduction following entry into the sediment. In the water column, U is generally 

stable and conservative in dissolved uranyl (U(VI)) carbonate complexes, and thus primarily 

enters the sediment through diffusion across the sediment-water interface (Ku et al., 1977; 

Anderson, 1987). At VM-In, we observe a gradual removal from the pore water within the zone 

of pore water Fe release, but no coincident increase in solid phase U, possibly due to dilution of 

authigenic solid U phases by the high accumulation rate observed at this site (Fig. 10a). In the 

outer regions of the fjord, however, U is removed from the pore water closer to the sediment 

surface, and accumulates in the solid phase, as reflected in the elevated solid contents at these 

sites (Fig 10b-c, e-f). The reduction of U is tightly coupled to both Fe and sulfate reduction in 

anoxic sediment, and following reduction to U(IV) it adsorbs to particle surfaces or precipitates, 

possibly as uraninite or meta-stable uraninite precursors (Anderson, 1987; McKee et al., 1987; 

Klinkhammer and Palmer, 1991; Barnes and Cochran, 1993; Zheng et al., 2002; Morford et al., 



 36 

2009). The observed solid phase U content increases are primarily in the exchangeable fraction, 

suggesting that the primary mode of pore water U removal is adsorption of U(IV) to particle 

surfaces. Fe- and sulfate-reducing organisms are capable of directly reducing U, potentially as a 

terminal electron acceptor (Cochran et al., 1986; Lovley et al., 1991; Lovley and Phillips, 1992). 

We conclude that at VM-In, U is likely reduced predominantly by Fe-reducing organisms 

(Lovley et al., 1991) while in the outer regions of both fjords, the combined activity of sulfate 

and Fe reducing bacteria make the sediments a more efficient sink for pore water U, which 

adsorbs to particle surfaces following reduction at depth (Lovley and Phillips, 1992; Gu et al., 

2005). At VK-In, the only site where U increases in the pore water, high pore water carbonate 

concentrations (Supplemental Table S3) may cause U to desorb from Fe-OHO and form soluble 

uranyl carbonate complexes (Allard, 1982; Gu et al., 2005). In contrast, VM-In contains notably 

less U in the exchangeable fraction, which could be the result of the oxidation and stripping of U 

from particle surfaces during transport in meltwater streams.  

Diagenetic alteration of Mo-phases is affected by both Fe and sulfate reduction, with Mn 

reduction playing a smaller role (Fig. 11). Typically, Mo is assumed to associate more with Mn-

OHO (Bertine and Turekian, 1973; Shimmield and Price, 1986; Shaw et al., 1990; Crusius et al., 

1996; März et al., 2011; Meinhardt et al., 2016), and the interaction between Mo and Fe in 

modern marine sediments has been less thoroughly established (Arnold et al., 2004; Poulson et 

al., 2006). The Mo-Fe interaction in the Svalbard fjords is most apparent at VK-In, VK-Mid, and 

VM-In, where there is spatial separation between the zones of Fe and Mn reduction (Fig. 11). 

The removal of Mo from the pore water in the Mn reduction zone most likely occurs when Fe2+ 

is oxidized by Mn(IV) and precipitates (Burdige, 1993; Postma and Appelo, 2000), causing pore 

water Mo to adsorb to the fresh Fe-OHO surfaces (Gustafsson, 2003; Goldberg et al., 2009). Any 
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Mo that is released from the dissolving Mn-OHO in this process may immediately re-adsorb to 

the Fe-OHO. Upon burial deeper into the Fe reduction zone, Mo is released back into the pore 

water as Mo-rich Fe-OHO dissolves (Fig. 11a, e). At VK-Out, VM-Mid, and VM-Out, surface 

solid phase Mo enrichments in the easily reducible and reducible fractions lie directly above pore 

water maxima in the sediment column (Fig. 11), which suggests that the precipitation of fresh 

Mn- and Fe-OHO at the oxic sediment surface serves as a sink for dissolved Mo released at 

depth. The same process may occur at VK-Out even though our sampling resolution did not 

capture the sediment surface pore water depletion. 

The  removal of pore water Mo in the deeper sediment layers at VK-Out, VM-Mid, and 

VM-Out (Fig. 11) is most likely due to the reduction of Mo(VI), followed by precipitation and/or 

adsorption to particle surfaces. Mo becomes particle reactive at a certain sulfide concentration 

threshold (Helz et al., 1996; Zheng et al., 2000). Given the relatively high proportion of solid 

phase Mo in the exchangeable fraction in the deepest samples (Fig. 11), the adsorption of 

reduced Mo may be of particular importance. Interestingly, removal occurs at VK-In, VK-Out, 

VM-Mid, and VM-Out despite the absence of detectable H2S at depth, suggesting that at these 

locations either it is not necessary for sulfide concentrations to be above the sulfide concentration 

threshold for Mo sulfidization to occur, or the reduction and removal is accomplished through 

direct interaction with sulfate reducing bacteria rather than indirectly through pore water sulfide 

(Helz et al., 1996; Tucker et al., 1997; Zheng et al., 2000).  

Arsenic is released to the pore water within the zone of Fe oxide dissolution (Fig. 12), 

demonstrating a strong linkage between As and Fe cycling which can be explained by As 

adsorption onto and co-precipitation with Fe-OHO as previously observed in high latitude 

sediments and many other settings (Aggett and O’Brien, 1985; Brannon and Patrick, 1987; 
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Cullen and Reimer, 1989; Belzile and Tessier, 1990; März et al., 2011; Burton et al., 2013; 

Meinhardt et al., 2016). The large proportions of solid phase As in the reducible fraction (Fig. 

12) suggest that solid phase As is primarily associated with crystalline Fe-OHO. However, pore 

water As behavior does not perfectly mirror Fe trends in the fjords (Fig. 12). For example, 

overall pore water As concentrations at depth increase with distance from the glacier in both 

fjords, a trend that is not reflected in the Fe profiles (Fig. 5). Instead, these pore water As 

increases appear to be controlled by factors other than the reductive dissolution of Fe(III), and 

particularly correlate with higher sulfate reduction rates, suggesting that microbial sulfate 

reduction may trigger the release of dissolved As from the solid phase (Keimowitz et al., 2007). 

Burton et al. (2013) found that anoxic sediment columns amended with As(III) released more 

dissolved As when they had been inoculated with sulfate reducing bacteria as compared to 

sterilized columns. This may be explained by a ligand exchange at the surface of Fe oxides, such 

as goethite, that leads to the replacement of adsorbed As with the sulfide produced during 

microbial sulfate reduction (Burton et al., 2013). The reduction of Fe(III) by sulfide leads to the 

formation of FeS (mackinawite), which does not adsorb or incorporate As (Kirk et al., 2010). 

Our data indicate that this process occurs in the middle and outer sites of both fjords, where the 

alteration of Fe oxides that are coated with and eventually replaced by mackinawite (Kocar et al., 

2010; Burton et al., 2011, 2013) leads to the release of dissolved As into the pore water. This is 

supported by the co-occurrence of elevated AVS contents (Fig. 4b, e) and high dissolved As 

concentrations (Fig. 12b-c, e-f). Further, As is released to the pore water in the same area where 

Mo is removed at VM-Mid (below 47 cmbsf), VM-Out (below 3 cm), and VK-Out (below 2.5 

cm) (Fig. 11b-c, f and Fig. 12b-c, f). This could indicate an increase in the availability of sulfide, 

which simultaneously mobilizes As and removes dissolved Mo (Helz et al., 1996; Burton et al., 
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2013). In contrast, the inner sites in both fjords have the lowest sulfate reduction rates and 

therefore the As released during Fe reduction at these sites may be rapidly re-adsorbed to oxide 

particles rather than accumulating in the pore water. Additionally, the glacial sediment source at 

the inner sites may supply large amounts of freshly ground, Fe-OHO-rich particles with vacant 

adsorption sites that serve as efficient sinks for the released As.  

 

6. Summary and conclusions 

6.1 Biogeochemical gradients along the head-to-mouth fjord axis 

This investigation reveals landscape-scale biogeochemical gradients in Van Mijenfjorden 

and Van Keulenfjorden from the glacially influenced fjord head to the marine influenced mouth 

(Fig. 13b). Sediment accumulation rate near the glacial input is high and, based on previous 

research, likely decreases toward the mouth of the fjord. Unlike open marine systems, 

sedimentation and labile organic carbon flux are decoupled in these fjords. Close to the glacial 

source, dilution of labile organic carbon by high accumulation of metal oxide-rich glacial flour 

may suppress microbial reduction rates and promote benthic oxidation of detrital pyrite. In the 

outer fjord regions with lower accumulation of glacial flour, greater availability of labile, marine 

organic carbon likely contributes to the observed higher net sulfate reduction rates and 

accumulation of sulfide minerals, along with the compression of Fe and Mn reduction zones near 

the sediment surface. This generates authigenic Fe- and Mn-OHO enrichments in the surface 

sediments of the outer fjord, and may increase the potential for transport of Fe and Mn into the 

water column through diffusion across the sediment-water interface or resuspension of enriched 

surface sediments.  
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All trace elements investigated in this study are influenced by Fe, Mn, and sulfur cycling 

(Fig. 13c); however, the strength of the interaction with these cycles is different for each element 

and their diagenetic behaviors are controlled by the head-to-mouth gradients in the availability of 

labile organic carbon as described above. Cobalt and nickel are closely coupled to Fe and Mn 

cycling, and show similar release into the pore water with oxide reduction at depth coupled with 

re-oxidation and solid phase enrichment at the sediment surface, particularly at the outer sites. In 

contrast, copper appears to be predominantly controlled by sulfur transformations, with release 

into the pore water during sulfide oxidation near the head of the fjord and precipitation in 

authigenic sulfide minerals in the outer regions where higher sulfate reduction rates occur. 

Uranium is reduced and scavenged from the pore water in association with Fe and sulfate 

reduction, so the sediments become a more efficient sink for dissolved uranium with increasing 

distance from the glacier. Molybdenum behavior is controlled by Fe cycling close to the glacier, 

but is likely reduced and removed from the pore water with increasing sulfate reduction rates 

out-fjord. Arsenic is linked with Fe cycling at the inner fjord sites, but becomes de-coupled as Fe 

particles become coated with Fe-monosulfides at the outer sites, driving accumulation of As in 

the pore water.  

 

6.2 Comparison between tidewater glacier- and meltwater stream-dominated sediment delivery 

The two fjords in this study share similar catchment area bedrock lithologies, water 

column circulation, and organic matter delivery to the sediments. Thus, the subtle differences 

between the fjords may be attributable to differences in the supplies of glacial sediment from the 

surging tidewater glacier in Van Keulenfjorden and the extensive meltwater stream systems in 

Van Mijenfjorden (see Fig. 13a). The largest differences are in the inner regions of the fjords, 



 41 

where glacial impact and source processing are highest. The sediment accumulation rate at the 

inner site in VM is lower than the estimated minimum rate at the inner site in VK, most likely 

due to a combination of sediment trapping in the meltwater streams feeding VM and an increase 

in sediment delivery associated with the recent surge of Nathorstbreen in VK. The sediments at 

the inner regions of VK have large contents of pyrite, likely detrital and eroded from the 

underlying bedrock, and the trace element cycling appears limited, potentially by rapid 

deposition of crystalline, less reactive glacial flour during the recent tidewater glacier surge. In 

contrast, the inner site in VM shows evidence of strong trace element cycling and contains 

comparatively less pyrite. We suggest that proglacial and riverine processing in the Van 

Mijenfjorden meltwater streams allows for additional transformation of material from glacial 

discharge by oxidizing detrital sulfide minerals and generating more reactive particulate trace 

element species through physical, chemical, and biological weathering. 

At the inner and middle sites of VM, zones of Fe and Mn reduction and associated 

aqueous Co, Ni, and As release are closer to the sediment surface relative to the corresponding 

sites in VK, possibly due to a lower accumulation rate and a higher content of total extractable 

(i.e. reactive) trace metal phases. The inner and middle sites in VM contain higher pore water 

concentrations of Cu, which could be caused by in situ oxidation of Cu-bearing sulfide minerals. 

Solid U content at VM-In is lower than at VK-In and there is net removal from the pore water, 

potentially the result of the stripping of adsorbed U from particle surfaces during transport in the 

meltwater streams feeding VM followed by re-adsorption onto particle surfaces within the 

sediment. Solid phase Mo is enriched in VM-In relative to VK-In, and a greater release to the 

pore water is observed within the Fe reduction zone.  
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6.3 Impact of glacial retreat on trace element cycling 

Glaciers are currently experiencing net mass loss due to climate change (Dowdeswell et 

al., 1997). As a result, many tidewater glaciers are retreating into subaerial valleys (Ziaja, 2001). 

This study demonstrates that a change from tidewater glacier to meltwater stream sediment 

supply may have an impact on trace element processing in coastal sediments. However, it is 

important to note that the findings of this study cannot be extrapolated to all other fjords, where 

different conditions such as circulation and bedrock composition may exert different controls on 

trace element cycling in the sediments. 

With glacial retreat, glaciated fjord systems similar to those in this study may experience 

greater weathering during sediment transport in meltwater streams, reducing the delivery of 

detrital minerals (e.g. pyrite) to the fjord and transferring associated trace elements into more 

reactive phases (e.g. amorphous oxides). This delivery of more reactive trace metal phases along 

with lower sediment accumulation rates may drive zones of Fe and Mn reduction closer to the 

sediment surface and allow accumulation of reduced metals in the pore water in the regions close 

to the glacial input. Thus, the retreat of tidewater glaciers may drive increased benthic cycling 

and possible remobilization of Fe, Mn, Co, Ni, Mo, and As from reactive oxides and of Cu from 

weathered sulfide minerals. In contrast, the sediments may become a more efficient sink for 

elements such as U that are stripped from particle surfaces during stream transport and re-

adsorbed in reducing sediment. Overall, these shifts in trace element diagenetic behavior and 

potential transport with glacial retreat could impact the biogeochemical cycling of carbon and 

nutrients along glaciated coastlines and within polar oceans.  

 

Acknowledgements 



 43 

We thank the captain (Stig Henningsen) and first mate (Reidar Sørensen) aboard MS Farm 

for their assistance during the 2016 sampling campaign. We thank the staff of the Kings Bay 

Marine Laboratory and the AWIPEV Arctic Research Base in Ny Ålesund for their assistance 

and provision of lab space. We are indebted to Susann Henkel and Sabine Kasten of the Alfred 

Wegener Institute for their support of the research expedition and the scientific party of the 2016 

campaign for their assistance, stimulating discussions, and good company. Many thanks to: Katie 

Wooton and Troy Rasbury of the FIRST@Stony Brook, who provided technical assistance and 

the use of their mass spectrometer for trace element analysis; Isaac Klingensmith, who provided 

lab assistance and advice; and Julia Stepanuk, who provided essential help with ArcGIS and R 

Studio for the making of the map and figures in this paper. Geospatial imagery and support was 

provided by the Polar Geospatial Center and Brad Herried, under NSF-OPP awards 1043681 & 

1559691. This research was funded by a Minghua Zhang Early Career Faculty Innovation Award 

to LMW at SoMAS, SBU-SUNY and partially supported by postdoctoral fellowships from the 

US-National Science Foundation [EAR-PF1625158 to ABM], and German Research Foundation 

[DFG 389371177 to KL]. Access to the AWIPEV Arctic Research Base in Ny Ålesund was 

granted by the AWI under project nr. KOP 56 (RiS #10528). We also thank the editor of this 

paper, C. Peacock, and acknowledge the insightful reviews provided by C. März and two 

anonymous reviewers.  

  

References 

Achterberg E.P., van den Berg C.M.G., Boussemart M., Davison W. (1997) Speciation and 
cycling of trace metals in Esthwaite Water: A productive English lake with seasonl deep-
water anoxia. Geochim. Cosmochim. Acta 61, 5233–5253. 
https://doi.org/10.1038/nature19355.Hiess 

Aggett J., O’Brien G.A. (1985) Detailed model for the mobility of arsenic in lacustrine sediments 
based on measurements in Lake Ohakuri. Environ. Sci. Technol. 19, 231–238. 



 44 

Algeo T.J., Maynard J.B. (2004) Trace-element behavior and redox facies in core shales of 
Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 206, 289–318. 
https://doi.org/10.1016/j.chemgeo.2003.12.009 

Algeo T.J., Rowe H. (2012) Paleoceanographic applications of trace-metal concentration data. 
Chem. Geol. 324–325, 6–18. https://doi.org/10.1016/j.chemgeo.2011.09.002 

Allard B. (1982) Solubilities of actinides in neutral or basic solutions. Actinides Perspect. 553–
580. 

Aller R.C. (1994) The sedimentary Mn cycle in Long Island Sound: Its role as intermediate 
oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction 
balances. J. Mar. Res. 52, 259–295. https://doi.org/10.1357/0022240943077091 

Aller R.C., Rude P.D. (1988) Complete oxidation of solid phase sulfides by manganese and 
bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52, 751–765. 

Anderson R.F. (1987) Redox behavior of uranium in an anoxic marine basin. Uranium 3, 145–
164. 

Anderson S.P., Drever J.I., Frost C.D., Holden P. (2000) Chemical weathering in the foreland of 
a retreating glacier. Geochim. Cosmochim. Acta 64, 1173–1189. 
https://doi.org/10.1016/S0016-7037(99)00358-0 

Anderson S.P., Drever J.I., Humphrey N.F. (1997) Chemical weathering in glacial environments. 
Geology 25, 399-402. https://doi.org/10.1130/00917613(1997)025<0399:CWIGE>2.3.CO;2 

Appleby P.G., Oldfield F. (1978) The calculation of lead-210 dates assuming a constant rate of 
supply of unsupported 210Pb to the sediment. Catena 5, 1–8. 
https://doi.org/10.1016/S0341-8162(78)80002-2 

Arnold G.L., Anbar A.D., Barling J., Lyons T.W. (2004) Molybdenum isotope evidence for 
widespread anoxia in mid-Proterozoic Oceans. Science 304, 87–90. 
https://doi.org/10.1029/2002GC000356 

Arnosti C., Jørgensen B.B. (2006) Organic carbon degradation in Arctic marine sediments, 
Svalbard: A comparison of initial and terminal steps. Geomicrobiol. J. 23, 551–563. 
https://doi.org/10.1080/01490450600897336 

Audry S., Blanc G., Schäfer J., Chaillou G., Robert S. (2006) Early diagenesis of trace metals 
(Cd, Cu, Co, Ni, U, Mo, and V) in the freshwater reaches of a macrotidal estuary. Geochim. 

Cosmochim. Acta 70, 2264–2282. https://doi.org/10.1016/j.gca.2006.02.001 
Barnes C.E., Cochran K.J. (1993) Uranium geochemistry in estuarine sediments: Controls on 

removal and release processes. Geochim. Cosmochim. Acta 57, 555–569. 
Belzile N., Tessier A. (1990) Interactions between arsenic and iron oxyhydroxides in lacustrine 

sediments. Geochim. Cosmochim. Acta 54, 103–109. https://doi.org/10.1016/0016-
7037(90)90198-T 

Bertine K.K., Turekian K.K. (1973) Molybdenum in marine deposits. Geochim. Cosmochim. 

Acta 37, 1415–1434. https://doi.org/10.1016/0016-7037(73)90080-X 
Bhatia M.P., Kujawinski E.B., Das S.B., Breier C.F., Henderson P.B., Charette M.A. (2013) 

Greenland meltwater as a significant and potentially bioavailable source of iron to the 
ocean. Nat. Geosci. 6, 274–278. https://doi.org/10.1038/ngeo1746 

Bliss A., Hock R. and Radić V. (2014) Global response of glacier runoff to twenty-first century 
climate change. J. Geophys. Res. Earth Surf. 119, 717–730. 

Bottrell S.H., Tranter M. (2002) Sulphide oxidation under partially anoxic conditions at the bed 
of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368. 
https://doi.org/10.1002/hyp.1012 



 45 

Buongiorno J., Herbert L. C., Wehrmann L. M., Michaud A. B., Laufer K., Røy H., Jørgensen B. 
B., Szynkiewicz A., Faiia A., Yeager K. M., Schindler K. and Lloyd K. G. (2019) Complex 
microbial communities drive iron and sulfur cycling in Arctic fjord sediments. Appl. 

Environ. Microbiol. 85, e00949-19. 
Bourgeois S., Kerhervé P., Calleja M.L., Many G., Morata N. (2016) Glacier inputs influence 

organic matter composition and prokaryotic distribution in a high Arctic fjord 
(Kongsfjorden, Svalbard). J. Mar. Syst. 164, 112–127. 
https://doi.org/10.1016/J.JMARSYS.2016.08.009 

Boyd E.S., Hamilton T.L., Havig J.R., Skidmore M.L., Shock E.L. (2014) Chemolithotrophic 
primary production in a subglacial ecosystem. Appl. Environ. Microbiol. 80, 6146–6153. 
https://doi.org/10.1128/AEM.01956-14 

Brannon J.M., Patrick W.H. (1987) Fixation, transformation, and mobilization of arsenic in 
sediments. Environ. Sci. Technol. 21, 450–459. 

Brüchert V., Knoblauch C., Jørgensen B.B. (2001) Controls on stable sulfur isotope fractionation 
during bacterial sulfate reduction in Arctic sediments. Geochim. Cosmochim. Acta 65, 763–
776. https://doi.org/10.1016/S0016-7037(00)00557-3 

Brumsack H.J. (2006) The trace metal content of recent organic carbon-rich sediments: 
Implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimatol. 

Palaeoecol. 232, 344–361. https://doi.org/10.1016/j.palaeo.2005.05.011 
Burdige D.J. (1993) The biogeochemistry of manganese and iron reduction in marine sediments. 

Earth Sci. Rev. 35, 249–284. https://doi.org/10.1016/0012-8252(93)90040-E 
Burdige D.J., Nealson K.H. (1986) Chemical and microbiological studies of sulfide - mediated 

manganese reduction. Geomicrobiol. J. 4, 361–387. 
Burton E.D., Johnston S.G., Bush R.T. (2011) Microbial sulfidogenesis in ferrihydrite-rich 

environments: Effects on iron mineralogy and arsenic mobility. Geochim. Cosmochim. Acta 
75, 3072–3087. https://doi.org/10.1016/j.gca.2011.03.001 

Burton E.D., Johnston S.G., Planer-Friedrich B. (2013) Coupling of arsenic mobility to sulfur 
transformations during microbial sulfate reduction in the presence and absence of humic 
acid. Chem. Geol. 343, 12–24. https://doi.org/10.1016/J.CHEMGEO.2013.02.005 

Caetano M., Madureira M.-J., Vale C. (2003) Metal remobilisation during resuspension of 
anoxic contaminated sediment: Short-term laboratory study. Water. Air. Soil Pollut. 143, 
23–40. https://doi.org/10.1023/A:1022877120813 

Calvert S.E., Pedersen T. (1993) Geochemistry of Recent oxic and anoxic marine sediments: 
Implications for the geological record. Mar. Geol. 113, 67–88. 
https://doi.org/10.1016/0025-3227(93)90150-T 

Calvert S.E., Price N.B. (1977) Geochemical variation in ferromanganese nodules and associated 
sediments from the Pacific Ocean. Mar. Chem. 5, 43–74. https://doi.org/10.1016/0304-
4203(77)90014-7 

Canfield D.E. (1989) Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–
632. 

Canion A., Overholt W.A., Kostka J.E., Huettel M., Lavik G., Kuypers M.M.M. (2014) 
Temperature response of denitrification and anaerobic ammonium oxidation rates and 
microbial community structure in Arctic fjord sediments. Environ. Microbiol. 16, 3331–
3344. https://doi.org/10.1111/1462-2920.12593 



 46 

Cappuyns V., Swennen R. and Niclaes M. (2007) Application of the BCR sequential extraction 
scheme to dredged pond sediments contaminated by Pb-Zn mining: A combined 
geochemical and mineralogical approach. J. Geochemical Explor. 93, 78–90. 

Charette M.A., Lam P.J., Lohan M.C., Kwon E.Y., Hatje V., Jeandel C., Shiller A.M., Cutter 
G.A., Thomas A., Boyd P.W., Homoky W.B., Milne A., Thomas H., Andersson P.S., 
Porcelli D., Tanaka T., Geibert W., Dehairs F., Garcia-Orellana J. (2016) Coastal ocean and 
shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from 
GEOTRACES. Philos. Trans. R. Soc. A. 374, 20160076. 
https://doi.org/10.1098/rsta.2016.0076 

Chillrud S.N., Pedrozo F.L., Temporetti P.F., Planas H.F., Froelich P.N. (1994) Chemical 
weathering of phosphate and germanium in glacial meltwater streams: Effects of subglacial 
pyrite oxidation. Limnol. Oceanogr. 39, 1130–1140. 
https://doi.org/10.4319/lo.1994.39.5.1130 

Cheng C.Y., Lawson F. (1991) The kinetics of leaching chalcocite in acidic oxygenated 
sulphate-chloride solutions. Hydrometallurgy 27, 249–268. https://doi.org/10.1016/0304-
386X(91)90053-O 

Cid A.P., Nakatsuka S., Sohrin Y. (2012) Stoichiometry among bioactive trace metals in the 
Chukchi and Beaufort Seas. J. Oceanogr. 68, 985–1001. https://doi.org/10.1007/s10872-
012-0150-8 

Cline J.D. (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. 
Limnol. Oceanogr. 14, 454–458. https://doi.org/10.4319/lo.1969.14.3.0454 

Cochran K.J., Carey A.E., Sholkovitz E.R., Surprenant L.D. (1986) The geochemistry of 
uranium and thorium in coastal marine seidments and sediment pore waters. Geochim. 

Cosmochim. Acta 50, 663–680. 
Cokelet E.D., Tervalon N., Bellingham J.G. (2008) Hydrography of the West Spitsbergen 

Current, Svalbard Branch: Autumn 2001. J. Geophys. Res. Ocean. 113, C01006. 
https://doi.org/10.1029/2007JC004150 

Cooper R.J., Wadham J.L., Tranter M., Hodgkins R., Peters N.E. (2002) Groundwater 
hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. J. 

Hydrol. 269, 208–223. https://doi.org/10.1016/S0022-1694(02)00279-2 
Cooper D.C., Morse J.W. (1998) Extractability of metal sulfide minerals in acidic solutions:  

Application to environmental studies of trace metal contamination within anoxic sediments. 
Environ. Sci. Technol. 32, 1076–1078. https://doi.org/10.1021/es970415t 

Cottier F., Tverberg V., Inall M., Svendsen H., Nilsen F., Griffiths C. (2005) Water mass 
modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of 
Kongsfjorden, Svalbard. J. Geophys. Res. Ocean. 110, C12005. 
https://doi.org/10.1029/2004JC002757 

Crusius J., Anderson R.F. (1995) Evaluating the mobility of 137Cs, 239+240Pu, and 210Pb from 
their distributions in laminated lake sediments. J. Paleolimnol. 13, 119–141. 

Crusius J., Calvert S., Pedersen T., Sage D. (1996) Rhenium and molybdenum enrichments in 
sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. 

Sci. Lett. 145, 65–78. https://doi.org/10.1016/S0012-821X(96)00204-X 
Cui X., Bianchi T.S., Savage C., Smith R.W. (2016) Organic carbon burial in fjords: Terrestrial 

versus marine inputs. Earth Planet. Sci. Lett. 451, 41–50. 
https://doi.org/10.1016/J.EPSL.2016.07.003 

Cullen J.T. (2006) On the nonlinear relationship between dissolved cadmium and phosphate in 



 47 

the modern global ocean: Could chronic iron limitation of phytoplankton growth cause the 
kink? Limnol. Oceanogr. 51, 1369–1380. 

Cullen W.R., Reimer K.J. (1989) Arsenic Speciation in the Environment. Chem. Rev 89, 713–
764. 

Dallmann, W. K. (Ed.) (1999) Lithostratigraphic Lexicon of Svalbard. Norsk Polarinstitutt, 
Tromsø. pp. 318. 

Dickens G.R., Koelling M., Smith D.C., Schnieders L. (2007) Rhizon sampling of pore waters 
on scientific drilling expeditions: An example from the IODP expedition 302, Arctic Coring 
Expedition (ACEX), Scientific Drilling 4, 22-25. https://doi.org/10.2204/iodp.sd.4.08.2007 

Dowdeswell J.A., Hagen J.O., Björnsson H., Glazovsky A.F., Harrison W.D., Holmlund P., Jania 
J., Koerner R.M., Lefauconnier B., Simon C., Ommanney L., Thomas R.H. (1997) The 
mass balance of circum-Arctic glaciers and recent climate change. Quat. Res. 48, 
QR971900. 

Eickhoff M., Obst M., Schröder C., Hitchcock A.P., Tyliszczak T., Martinez R.E., Robbins L.J., 
Konhauser K.O., Kappler A. (2014) Nickel partitioning in biogenic and abiogenic 
ferrihydrite: The influence of silica and implications for ancient environments. Geochim. 

Cosmochim. Acta 140, 65–79. https://doi.org/10.1016/j.gca.2014.05.021 
Farnsworth W.R., Ingólfsson Ó., Noormets R., Allaart L., Alexanderson H., Henriksen M., 

Schomacker A. (2017) Dynamic Holocene glacial history of St. Jonsfjorden, Svalbard. 
Boreas 46, 585–603. https://doi.org/10.1111/bor.12269 

Fernex F., Février G., Bénaïm J., Arnoux A. (1992) Copper, lead and zinc trapping in 
Mediterranean deep-sea sediments: probable coprecipitation with Mn and Fe. Chem. Geol. 
98, 293–306. https://doi.org/10.1016/0009-2541(92)90190-G 

Forwick M., Baeten N.J., Vorren T.O. (2009) Pockmarks in Spitsbergen fjords. Nor. Geol. 

Tidsskr. 89, 65–77. https://doi.org/10.1097/PEC.0b013e31827e647f 
Fossing H., Jørgensen B.B. (1989) Measurement of bacterial sulfate reduction in sediments : 

Evaluation of a single-step chromium reduction method. Biogeochemistry 8, 205–222. 
Gilbert R., Nielsen N., Mo H., Desloges J.R., Rasch M. (2002) Glacimarine sedimentation in 

Kangerdluk (Disko Fjord), West Greenland, in response to a surging glacier. Mar. Geol. 
191, 1–18. 

Gleyzes C., Tellier S., Astruc M. (2002) Fractionation studies of trace elements in contaminated 
soils and sediments: a review of sequential extraction procedures. Trends Anal. Chem. 21, 
451–467. 

Glud R.N., Holby O., Hoffmann F., Canfield D.E. (1998) Benthic mineralization and exchange 
in Arctic sediments (Svalbard, Norway). Mar. Ecol. Prog. Ser. 173, 237–251. 

Goldberg T., Archer C., Vance D., Poulton S.W. (2009) Mo isotope fractionation during 
adsorption to Fe (oxyhydr)oxides. Geochim. Cosmochim. Acta 73, 6502–6516. 
https://doi.org/10.1016/j.gca.2009.08.004 

Gregory D.D., Large R.R., Halpin J.A., Baturina E.L., Lyons T.W., Wu S., Danyushevsky L., 
Sack P.J., Chappaz A., Maslennikov V.V., Bull S.W. (2015) Trace element content of 
sedimentary pyrite in black shales. Econ. Geol. 110, 1389–1410. 
https://doi.org/10.2113/econgeo.110.6.1389 

Gu B., Wu W.-M., Ginder-Vogel M.A., Yan H., Fields M.W., Zhou J., Fendorf S., Criddle C.S., 
Jardine P.M. (2005) Bioreduction of uranium in a contaminated soil column. Environ. Sci. 

Technol. 39, 4841–4847. https://doi.org/10.1021/ES050011Y 
Gunnarsson M., Jakobsson A.M., Ekberg S., Albinsson Y., Ahlberg E. (2000) Sorption studies of 



 48 

cobalt(II) on colloidal hematite using potentiometry and radioactive tracer technique. J. 

Colloid Interface Sci. 231, 326-336. https://doi.org/10.1006/jcis.2000.7149 
Gustafsson J.P. (2003) Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. 

Geol. 200, 105–115. https://doi.org/10.1016/S0009-2541(03)00161-X 
Hall P.O.J., Aller R.C. (1992) Rapid, small volume, flow injection analysis for SCO2, and 

NH4+ in marine and freshwaters. Limnol. Oceanogr. 37, 1113–1119. 
https://doi.org/10.4319/lo.1992.37.5.1113 

Harrold Z.R., Skidmore M.L., Hamilton T.L., Desch L., Amada K., Van Gelder W., Glover K., 
Roden E.E., Boyd E.S. (2016) Aerobic and anaerobic thiosulfate oxidation by a cold-
adapted, subglacial chemoautotroph. Appl. Environ. Microbiol. 82, 1486–1495. 
https://doi.org/10.1128/AEM.03398-15 

Hawkings J. R., Wadham J. L., Tranter M., Raiswell R., Benning L. G., Statham P. J., Tedstone 
A., Nienow P., Lee K., Telling J. (2014) Ice sheets as a significant source of highly reactive 
nanoparticulate iron to the oceans. Nat. Commun. 5, 3929. 

Hawkings J.R., Benning L.G., Raiswell R., Kaulich B., Araki T., Abyaneh M., Stockdale A., 
Koch-Müller M., Wadham J.L., Tranter M. (2018) Biolabile ferrous iron bearing 
nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101. 
https://doi.org/10.1016/j.epsl.2018.04.022 

Hedges J.I., Keil R.G. (1995) Sedimentary organic matter preservation: an assessment and  
speculative synthesis. Mar. Chem. 49, 81–115. 

Hedges J.I., Keil R.G., Benner R. (1997) What happens to terrestrial organic matter in the ocean? 
Org. Geochem. 27, 195–212. 

Hegseth E.N., Tverberg V. (2013) Effect of Atlantic water inflow on timing of the phytoplankton 
spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J. Mar. Syst. 113–114, 94–
105. https://doi.org/10.1016/j.jmarsys.2013.01.003 

Helz G.R., Miller C. V., Charnock J.M., Mosselmans J.F.W., Pattrick R.A.D., Garner C.D., 
Vaughan D.J. (1996) Mechanism of molybdenum removal from the sea and its 
concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631–
3642. https://doi.org/10.1016/0016-7037(96)00195-0 

Hjelle A. (1993) The Geology of Svalbard. Norsk Polarinstitut, Oslo. 
Hodal H., Falk-Petersen S., Hop H., Kristiansen S., Reigstad M. (2012) Spring bloom dynamics 

in Kongsfjorden, Svalbard: Nutrients, phytoplankton, protozoans and primary production. 
Polar Biol. 35, 191–203. https://doi.org/10.1007/s00300-011-1053-7 

Hodson A., Anesio A.M., Tranter M., Fountain A., Osborn M., Priscu J., Laybourn-Parry J., 
Sattler B. (2008) Glacial Ecosystems. Ecol. Monogr. 78, 41–67. https://doi.org/10.1890/07-
0187.1 

Hop H., Pearson T., Hegseth E.N., Kovacs K.M., Wiencke C., Kwasniewski S., Eiane K., 
Mehlum F., Gulliksen B., Wlodarska-Kowalczuk M., Lydersen C., Weslawski J.M., 
Cochrane S., Gabrielsen G.W., Leakey R.J.G., Lønne O.J., Zajaczkowski M., Falk-Petersen 
S., Kendall M., Wängberg S.Å., Bischof K., Voronkov A.Y., Kovaltchouk N.A., Wiktor J., 
Poltermann M., Di Prisco G., Papucci C., Gerland S. (2002) The marine ecosystem of 
Kongsfjorden, Svalbard. Polar Res. 21, 167–208. https://doi.org/10.1111/j.1751-
8369.2002.tb00073.x 

Huerta-Diaz M.A., Morse, J.W. (1992) Pyritization of trace metals in anoxic marine sediments. 
Geochim. Cosmochim. Acta 56, 2681–2702. 



 49 

Iversen N., Jørgensen B.B. (1993) Diffusion coefficients of sulfate and methane in marine 
sediments: Influence of porosity. Geochim. Cosmochim. Acta 57, 571–578. 
https://doi.org/10.1016/0016-7037(93)90368-7 

Jones G.A., Kaiteris P. (1983) A vacuum-gasometric technique for rapid and precise analysis of 
calcium carbonate in sediments and soils. J. Sediment. Petrol. 53, 655–660. 

Jørgensen B.B. (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). 
Limnol. Oceanogr. 22, 814–832. https://doi.org/10.4319/lo.1977.22.5.0814 

Jørgensen B.B. (1978) A comparison of methods for the quantification of bacterial sulfate 
reduction in coastal marine sediments. Geomicrobiol. J. 1, 11–27. 
https://doi.org/10.1080/01490457809377721 

Jørgensen B.B. (1982) Mineralization of organic matter in the sea bed—the role of sulphate 
reduction. Nature 296, 643–645. https://doi.org/10.1038/296643a0 

Jørgensen B.B., Nelson D.C. (2004) Sulfide oxidation in marine sediments: Geochemistry meets 
microbiology, In: Geochemical Society of America Special Papers 379, 63–81. 

Kanneworff, E., Nicolaisen, W. (1983) A simple, hand-operated quantitative bottom sampler. 
Ophelia 22, 253-255. 

Kaštovská K., Stibal M., Šabacká M., Černá B., Šantrůčková H., Elster J. (2007) Microbial 
community structure and ecology of subglacial sediments in two polythermal Svalbard 
glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol. 30, 277–287. 
https://doi.org/10.1007/s00300-006-0181-y 

Keimowitz A.R., Mailloux B.J., Cole P., Stute M., Simpson H.J., Chillrud S.N. (2007) 
Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic 
remediation strategy. Environ. Sci. Technol. 41, 6718–6724. 
https://doi.org/10.1021/ES061957Q 

Kempf P., Forwick M., Laberg J.S., Vorren T.O. (2013) Late Weichselian and Holocene 
sedimentary palaeoenvironment and glacial activity in the high-arctic van Keulenfjorden, 
Spitsbergen. Holocene 23, 1607–1618. https://doi.org/10.1177/0959683613499055 

Kim J.-H., Peterse F., Willmott V., Kristensen D.K., Baas M., Schouten S., Sinninghe Damsté 
J.S. (2011) Large ancient organic matter contributions to Arctic marine sediments 
(Svalbard). Limnol. Oceanogr. 56, 1463–1474. https://doi.org/10.4319/lo.2011.56.4.1463 

Kirk M.F., Roden E.E., Crossey L.J., Brealey A.J., Spilde M.N. (2010) Experimental analysis of 
arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment 
reactors. Geochim. Cosmochim. Acta 74, 2538–2555. 
https://doi.org/10.1016/j.gca.2010.02.002 

Klinkhammer G.P., Palmer M.R. (1991) Uranium in the oceans: Where it goes and why. 
Geochim. Cosmochim. Acta 55, 1799–1806. 

Kocar B.D., Borch T., Fendorf S. (2010) Arsenic repartitioning during biogenic sulfidization and 
transformation of ferrihydrite. Geochim. Cosmochim. Acta 74, 980–994. 
https://doi.org/10.1016/j.gca.2009.10.023 

Kohler J., James T.D., Murray T., Nuth C., Brandt O., Barrand N.E., Aas H.F., Luckman A. 
(2007) Acceleration in thinning rate on western Svalbard glaciers. Geophys. Res. Lett. 34, 
LI8502. https://doi.org/10.1029/2007GL030681 

Kondo Y., Obata H., Hioki N., Ooki A., Nishino S., Kikuchi, T., Kuma, K. (2016) Transport of 
trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada 
Basin) in late summer 2012. Deep Sea Res. 116, 236–252. 
https://doi.org/10.1016/j.dsr.2016.08.010 



 50 

Kostka J.E., Thamdrup B., Glud R.N., Canfield D.E. (1999) Rates and pathways of carbon 
oxidation in permanently cold Arctic sediments. Mar. Ecol. Prog. Ser. 180, 7–21. 

Koziorowska K., Kuliński K., Pempkowiak J. (2016) Sedimentary organic matter in two 
Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen 
contents and stable isotopes composition. Cont. Shelf Res. 113, 38–46. 
https://doi.org/10.1016/J.CSR.2015.11.010 

Ku T.-L., Knauss K.G., Mathieu G.G. (1977) Uranium in open ocean: concentration and isotopic 
composition. Deep Sea Res. 24, 1005–1017. 

Kuliński K., Kędra M., Legeżyńska J., Gluchowska M., Zaborska A. (2014) Particulate organic 
matter sinks and sources in high Arctic fjord. J. Mar. Syst. 139, 27–37. 
https://doi.org/10.1016/J.JMARSYS.2014.04.018 

Larsen J.N., Anisimov O.A., Constable A., Hollowed A.B., Maynard N., Prestrud P.,  
Prowse T.D., Stone J.M.R. (2014): Polar regions. In: Climate Change 2014: Impacts,  

Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II  
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros,  
V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee,  
K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken,  
P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United  
Kingdom and New York, NY, USA, pp. 1567-1612. 

Lalande C., Moriceau B., Leynaert A., Morata N. (2016) Spatial and temporal variability in 
export fluxes of biogenic matter in Kongsfjorden. Polar Biol. 39, 1725–1738. 
https://doi.org/10.1007/s00300-016-1903-4 

Little S.H., Vance D., Lyons T.W., McManus J. (2015) Controls on trace metal authigenic 
enrichment in reducing sediments: Insights from modern oxygen-deficient settings. Am. J. 

Sci. 315, 77–119. https://doi.org/10.2475/02.2015.01 
Lovell H., Benn D.I., Lukas S., Ottesen D., Luckman A., Hardiman M., Barr I.D., Boston C.M. 

and Sevestre H. (2018) Multiple Late Holocene surges of a High-Arctic tidewater glacier 
system in Svalbard. Quat. Sci. Rev. 201, 162–185. 

Lovley D.R. (1993) Dissimilatory Metal Reduction. Annu. Rev. Microbiol. 47, 263–290. 
https://doi.org/10.1146/annurev.mi.47.100193.001403 

Lovley D.R., Phillips E.J.P. (1992) Reduction of Uranium by Desulfovibrio desulfuricans. Appl. 

Environ. Microbiol. 58, 850–856. 
Lovley D.R., Phillips E.J.P., Gorby Y.A., Landa E.R. (1991) Microbial reduction of uranium. 

Nature 350, 413–416. https://doi.org/10.1038/350413a0 
Luther G.W., Howarth R.W., Ryans R.A. (1982) Pyrite and oxidized iron mineral phases formed 

from pyrite oxidation in salt marsh and estuarine sediments. Geochim. Cosmochim. Acta 46, 
2665–2669. 

Manceau A., Drits V.A., Silvester E., Bartoli C., Lanson B. (1997) Structural mechanism of 
Co2+ oxidation by the phyllomanganate buserite. Am. Mineral. 82, 1150–1175. 
https://doi.org/10.2138/am-1997-11-1213 

Manceau A., Gorshkov A.I., Drits V.A. (1992) Structural chemistry of Mn, Fe, Co, and Ni in 
manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron 
and X-ray diffraction. Am. Mineral. 77, 1144–1157. 

März C., Stratmann A., Matthiessen J., Meinhardt A.-K., Eckert S., Schnetger B., Vogt C., Stein 
R., Brumsack H.-J. (2011) Manganese-rich brown layers in Arctic Ocean sediments: 



 51 

Composition, formation mechanisms, and diagenetic overprint. Geochim. Cosmochim. Acta 
75, 7668–7687. https://doi.org/10.1016/J.GCA.2011.09.046 

McKee B.A., DeMaster D.J., Nittrouer C.A. (1987) Uranium geochemistry on the Amazon shelf: 
Evidence for uranium release from bottom sediments. Geochim. Cosmochim. Acta 51, 
2779–2786. 

McManus J., Berelson W.M., Klinkhammer G.P., Hammond D.E., Holm C. (2005) Authigenic 
uranium: Relationship to oxygen penetration depth and organic carbon rain. Geochim. 

Cosmochim. Acta 69, 95–108. https://doi.org/10.1016/j.gca.2004.06.023 
Meinhardt A.K., März C., Schuth S., Lettmann K.A., Schnetger B., Wolff J.O. and Brumsack 

H.J. (2016) Diagenetic regimes in Arctic Ocean sediments: Implications for sediment 
geochemistry and core correlation. Geochim. Cosmochim. Acta 188, 125–146. 

Meyers P.A. (1990) Impacts of late Quaternary fluctuations in water level on the accumulation of 
sedimentary organic matter in Walker Lake, Nevada. Palaeogeogr. Palaeoclimatol. 

Palaeoecol. 78, 229–240. https://doi.org/10.1016/0031-0182(90)90216-T 
Middelburg J.J., van der Weijden C.H., Woittiez J.R.W. (1988) Chemical processes affecting the 

mobility of major, minor and trace elements during weathering of granitic rocks. Chem. 

Geol. 68, 253–273. https://doi.org/10.1016/0009-2541(88)90025-3 
Mitchell P.I., Holm E., Dahlgaard H., Boust D., Leonard K.S., Papucci C., Salbu B., Christensen 

G., Strand P., Sánchez-Cabeza J.A., Rissanen K., Pollard D., Gascó C. (1999) 
Radioecological Assessment of the Consequences of Contamination of Arctic Waters : 
Modelling the Key Processes Controlling Radionuclide Behaviour Under Extreme 
Conditions (ARMARA). 

Mitchell A. C., Brown G.H., Fuge R. (2001) Minor and trace element export from a glacierized 
Alpine headwater catchment (Haut Glacier d’Arolla, Switzerland). Hydrol. Process. 15, 
3499–3524. https://doi.org/10.1002/hyp.1041 

Mitchell A.C., Brown G.H., Fuge R. (2006) Minor and trace elements as indicators of solute 
provenance and flow routing in a subglacial hydrological system. Hydrol. Process. 20, 877–
897. https://doi.org/10.1002/hyp.6112 

Monien P., Lettmann K.A., Monien D., Asendorf S., Wölfl A.-C., Lim C.H., Thal J., Schnetger 
B., Brumsack H.J. (2014) Redox conditions and trace metal cycling in coastal sediments 
from the maritime Antarctic. Geochim. Cosmochim. Acta 141, 26–44. 
https://doi.org/10.1016/j.gca.2014.06.003 

Montross S.N., Skidmore M., Tranter M., Kivimäki A.-L., Parkes R.J. (2012) A microbial driver 
of chemical weathering in glaciated systems. Geology 41, 215–218. 
https://doi.org/10.1130/G33572.1 

Morel F.M.M., Hudson R.J.M., Price N.M. (1991) Limitation of productivity by trace metals in 
the sea. Limnol. Ocean. 36, 1742–1755. 

Morel F.M.M., Price N.M. (2003) The biogeochemical cycles of trace metals in the oceans. 
Science 300, 944–947. https://doi.org/10.1126/science.1083545 

Morford J.L., Emerson S. (1999) The geochemistry of redox sensitive trace metals in sediments. 
Geochim. Cosmochim. Acta 63, 1735–1750. https://doi.org/10.1016/S0016-7037(99)00126-
X 

Morford J.L., Martin W.R., Carney C.M. (2009) Uranium diagenesis in sediments underlying 
bottom waters with high oxygen content. Geochim. Cosmochim. Acta 73, 2920–2937. 
https://doi.org/10.1016/j.gca.2009.02.014 

Morse J.W., Luther III G.W. (1999) Chemical influences on trace metal-sulfide interactions in 



 52 

anoxic sediments. Geochim. Cosmochim. Acta 63, 3373–3378. 
Müller P.J. (1977) C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and 

organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta 41, 765–776. 
Murray J.W., Dillard J.G. (1979) The oxidation of cobalt(II) adsorbed on manganese dioxide. 

Geochim. Cosmochim. Acta 43, 781–787. https://doi.org/10.1016/0016-7037(79)90261-8 
Murray K.J., Webb S.M., Bargar J.R., Tebo B.M. (2007) Indirect oxidation of Co(II) in the 

presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1. Appl. Environ. 

Microbiol. 73, 6905–6909. https://doi.org/10.1128/AEM.00971-07 
Nameroff T.J., Calvert S.E., Murray J.W. (2004) Glacial-interglacial variability in the eastern 

tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. 
Paleoceanography 19, PA1010. https://doi.org/10.1029/2003PA000912 

Nickel M., Vandieken V., Brüchert V., Jørgensen B.B. (2008) Microbial Mn(IV) and Fe(III) 
reduction in northern Barents Sea sediments under different conditions of ice cover and 
organic carbon deposition. Deep. Res. II 55, 2390–2398. 
https://doi.org/10.1016/j.dsr2.2008.05.003 

Nielsdóttir M.C., Moore C.M., Sanders R., Hinz D.J., Achterberg E.P. (2009) Iron limitation of 
the postbloom phytoplankton communities in the Iceland Basin. Glob. Biogeochem. Cycles 
23, GB3001. https://doi.org/10.1029/2008GB003410 

Nixon S.L., Telling J.P., Wadham J.L., Cockell C.S. (2017) Viable cold-tolerant iron-reducing 
microorganisms in geographically diverse subglacial environments. Biogeosciences 14, 
1445–1455. https://doi.org/10.5194/bg-14-1445-2017 

Onarheim I.H., Smedsrud L.H., Ingvaldsen R.B., Nilsen F. (2014) Loss of sea ice during winter 
north of Svalbard. Tellus, Ser. A Dyn. Meteorol. Oceanogr. 66, 23933. 
https://doi.org/10.3402/tellusa.v66.23933 

Öztürk M. (1995) Trends of trace metal (Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) distributions at the 
oxic-anoxic interface in sulfides water of the Drammensjord. Mar. Chem. 48, 329–342. 

Pattrick R.A.D., Mosselmans J.F.W., Charnock J.M., England K.E.R., Helz G.R., Garner C.D., 
Vaughan D.J. (1997) The structure of amorphous copper sulfide precipitates: An X-ray 
absorption study, Geochim. Cosmochim. Acta 61, 2023-2036. 

Peacock C.L., Sherman D.M. (2004) Copper(II) sorption onto goethite, hematite and 
lepidocrocite: A surface complexation model based on ab initio molecular geometries and 
EXAFS spectroscopy. Geochim. Cosmochim. Acta 68, 2623–2637. 
https://doi.org/10.1016/j.gca.2003.11.030 

Peacock C. L. and Sherman D. M. (2007) Sorption of Ni by birnessite: Equilibrium controls on 
Ni in seawater. Chem. Geol. 238, 94–106. 

Postma D. (1985) Concentration of Mn and separation from Fe in sediments—I. Kinetics and 
stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochim. 

Cosmochim. Acta 49, 1023–1033. https://doi.org/10.1016/0016-7037(85)90316-3 
Postma D., Appelo C.A.J. (2000) Reduction of Mn-oxides by ferrous iron in a flow system: 

Column experiment and reactive transport modeling. Geochim. Cosmochim. Acta 64, 1237–
1247. 

Poulson R.L., Siebert C., McManus J., Berelson W.M. (2006) Authigenic molybdenum isotopes 
signatures in marine sediments. Geology 34, 617–620. 

Poulton S.W., Canfield D.E. (2005) Development of a sequential extraction procedure for iron: 
Implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 
209–221. https://doi.org/10.1016/j.chemgeo.2004.09.003 



 53 

Prahl F.G., Bennett J.T., Carpenter R. (1980) The early diagenesis of aliphatic hydrocarbons and 
organic matter in sedimentary particulates from Dabob Bay, Washington. Geochim. 

Cosmochim. Acta 44, 1967–1976. https://doi.org/10.1016/0016-7037(80)90196-9 
Prahl F.G., De Lange G.J., Scholten S., Cowie G.L. (1997) A case of post-depositional aerobic 

degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal 
Plain. Org. Geochem. 27, 141–152. 

Raiswell R., Tranter M., Benning L.G., Siegert M., De’ath R., Huybrechts P., Payne T. (2006) 
Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: 
Implications for iron delivery to the oceans. Geochim. Cosmochim. Acta 70, 2765–2780. 
https://doi.org/10.1016/J.GCA.2005.12.027 

Redfield A. C. (1934) On the proportions of organic derivatives in seawater and their relation to 
the composition of plankton. James Johnstone Memorial Volume, 176-192. 

Richard D., Sundby B., Mucci A. (2013) Kinetics of manganese adsorption, desorption, and 
oxidation in coastal marine sediments. Limnol. Oceanogr. 58, 987–996. 
https://doi.org/10.4319/lo.2013.58.3.0987 

Riedinger N., Formolo M.J., Lyons T.W., Henkel S., Beck A., Kasten S. (2014) An inorganic 
geochemical argument for coupled anaerobic oxidation of methane and iron reduction in 
marine sediments. Geobiology 12, 172–181. https://doi.org/10.1111/gbi.12077 

Ritchie J.C., Mchenry J.R. (1990) Application of radioactive fallout cesium-137 for measuring 
soil erosion and sediment accumulation rates and patterns: A review. J. Environ. Qual. 19, 
215–233. 

Rijkenberg M.J.A., Slagter H.A., van der Loeff M.R., van Ooije J., Gerringa, L.J.A. (2018) 
Dissolved Fe in the deep and upper Arctic Ocean with a focus on Fe limitation in the 
Nansen Basin. Front. Mar. Sci. 5, 88. https://doi.org/10.3389/fmars.2018.00088 

Robador A., Brüchert V., Jørgensen B.B. (2009) The impact of temperature change on the 
activity and community composition of sulfate-reducing bacteria in arctic versus temperate 
marine sediments. Environ. Microbiol. 11, 1692–1703. https://doi.org/10.1111/j.1462-
2920.2009.01896.x 

Robbins L.J., Lalonde S.V., Planavsky N.J., Partin C.A., Reinhard C.T., Kendall B., Scott, C., 
Hardist D.S., Gill B.C., Alessi D.S., Dupont C.L., Saito M.A., Crowe S.A., Poulton S.W., 
Bekker A., Lyons T.W., Konhauser K.O. (2016) Trace elements at the intersection of 
marine biological and geochemical evolution. Earth-Science Rev. 163, 323–348. 
https://doi.org/10.1016/J.EARSCIREV.2016.10.013 

Rowan D.E., Péwé T.L., Péwé R.H., Stuckenrath R. (1982) Holocene glacial geology of the Svea 
Lowland, Spitsbergen, Svalbard. Geogr. Ann. Ser. A, Phys. Geogr. 64, 35–51. 

Røy H., Weber H.S., Tarpgaard I.H., Ferdelman T.G., Jørgensen B.B. (2014) Determination of 
dissimilatory sulfate reduction rates in marine sediment via radioactive 35 S tracer. Limnol. 

Oceanogr. Methods 12, 196–211. https://doi.org/10.4319/lom.2014.12.196 
Sagemann J., Jørgensen B.B., Greeff O. (1998.) Temperature dependence and rates of sulfate 

reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol. J. 15, 85–100. 
Schippers A., Jørgensen B.B. (2002) Biogeochemistry of pyrite and iron sulfide oxidation in 

marine sediments. Geochim. Cosmochim. Acta 66, 85–92. https://doi.org/10.1016/S0016-
7037(01)00745-1 

Schmidt F., Hinrichs K.-U., Elvert M. (2010) Sources, transport, and partitioning of organic 
matter at a highly dynamic continental margin. Mar. Chem. 118, 37–55. 
https://doi.org/10.1016/J.MARCHEM.2009.10.003 



 54 

Scholz F., Severmann S., McManus J., Hensen C. (2014a) Beyond the Black Sea paradigm: The 
sedimentary fingerprint of an open-marine iron shuttle. Geochim. Cosmochim. Acta 127, 
368–380. https://doi.org/10.1016/j.gca.2013.11.041 

Scholz F., Severmann S., McManus J., Noffke A., Lomnitz U., Hensen C. (2014b) On the 
isotope composition of reactive iron in marine sediments: Redox shuttle versus early 
diagenesis. Chem. Geol. 389, 48–59. https://doi.org/10.1016/J.CHEMGEO.2014.09.009 

Schulz H.D., Zabel M. (Eds.) (2006) Marine Geochemistry. Springer-Verlag, Heidelberg.  
Seeberg-Elverfeldt J., Schlüter M., Feseker T., Kölling M. (2005) Rhizon sampling of 

porewaters near the sediment-water interface. Limnol. Oceanogr. Methods 3, 361–371. 
Sharp M., Parkes J., Fairchild I.J., Lamb H., Tranter M. (1999) Widespread bacterial populations 

at glaciers beds and their relationship to rock weathering and carbon cycling. Geology 27, 
107–110. https://doi.org/10.1130/0091-7613(1999)027<0107:WBPAGB>2.3.CO 

Sharp M., Tranter M., Brown G.H., Skidmore M, (1995) Rates of chemical denudation and CO2 
drawdown in a glacier-covered alpine catchment. Geology 23, 61–64. 

Shaw T.J., Gieskes J.M., Jahnke R.A. (1990) Early diagenesis in differing depositional 
environments: The response of transition metals in pore water. Geochim. Cosmochim. Acta 
54, 1233–1246. https://doi.org/10.1016/0016-7037(90)90149-F 

Sherman D.M., Peacock C.L. (2010) Surface complexation of Cu on birnessite (d-MnO2): 
Controls on Cu in the deep ocean. Geochim. Cosmochim. Acta 74, 6721–6730. 
https://doi.org/10.1016/j.gca.2010.08.042 

Shimmield G., Price N. (1986) The behaviour of molybdenum and manganese during early 
sediment diagenesis — offshore Baja California, Mexico. Mar. Chem. 19, 261–280. 
https://doi.org/10.1016/0304-4203(86)90027-7 

Skrabal S.A., Donat J.R., Burdige D.J. (2000) Pore water distributions of dissolved copper and 
copper-complexing ligands in estuarine and coastal marine sediments. Geochim. 

Cosmochim. Acta 64, 1843–1857. 
Solheim A., Pfirman S.L. (1985) Sea-floor morphology outside a grounded, surging glacier; 

Bråsvellbreen, Svalbard. Mar. Geol. 65, 127–143. https://doi.org/10.1016/0025-
3227(85)90050-7 

Spielhagen R.F., Werner K., Sørensen S.A., Zamelczyk K., Kandiano E., Budeus G., Husum K., 
Marchitto T.M., Hald M., Wegener A. (2011) Enhanced Modern Heat Transfer to the Arctic 
by Warm Atlantic Water. Science 331, 450–453. https://doi.org/10.1126/science.1199421 

Statham P.J., Skidmore M., Tranter M. (2008) Inputs of glacially derived dissolved and colloidal 
iron to the coastal ocean and implications for primary productivity. Global Biogeochem. 

Cycles 22, GB3013. https://doi.org/10.1029/2007GB003106 
Stockdal A., Davison W., Zhang H., Hamilton-Taylor J. (2010) The association of cobalt with 

iron and manganese (oxyhydr)oxides in marine sediment. Aquat. Geochemistry 16, 575–
585. https://doi.org/10.1007/s10498-010-9092-1 

Suess E. (1979) Mineral phases formed in anoxic sediments by microbial decomposition of 
organic matter. Geochim. Cosmochim. Acta 43, 339–352. https://doi.org/10.1016/0016-
7037(79)90199-6 

Sun Y.-Z., Püttmann W. (2000) The role of organic matter during copper enrichment in 
Kupferschiefer from the Sangerhausen basin, Germany. Org. Geochem. 31, 1143–1161. 

Sund M., Eiken T. (2010) Recent surges on Blomstrandbreen, Comfortlessbreen and 
Nathorstbreen, Svalbard. J. Glaciol. 56, 182–184. 

Sunda W.G. (2012) Feedback interactions between trace metal nutrients and phytoplankton in 



 55 

the ocean. Front. Microbiol. 3, 204. https://doi.org/10.3389/fmicb.2012.00204 
Svendsen H., Beszczynska-Møller A., Hagen J.O., Lefauconnier B., Tverberg V.G.S., Ørbæck 

J.B., Bischof K., Papucci C., Zajaczkowski M., Azzolini R., Bruland O., Wienck, C., 
Winther J.G., Dallmann W. (2002) The physical environment of Kongsfjorden-
Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133–166. 

Swanner E.D., Planavsky N.J., Lalonde S. V., Robbins L.J., Bekker A., Rouxel O.J., Saito M.A., 
Kappler A., Mojzsis S.J., Konhauser K.O. (2014) Cobalt and marine redox evolution. Earth 

Planet. Sci. Lett. 390, 253–263. https://doi.org/10.1016/J.EPSL.2014.01.001 
Szczuciński W., Zajączkowski M., Scholten J. (2009) Sediment accumulation rates in subpolar 

fjords – Impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuar. Coast. 

Shelf Sci. 85, 345–356. https://doi.org/10.1016/J.ECSS.2009.08.021 
Takahashi Y., Manceau A., Geoffroy N., Marcus M.A., Usui A. (2007) Chemical and structural 

control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim. 

Cosmochim. Acta 71, 984–1008. https://doi.org/10.1016/j.gca.2006.11.016 
Tapia J., Audry S. (2013) Control of early diagenesis processes on trace metal (Cu, Zn, Cd, Pb 

and U) and metalloid (As, Sb) behaviors in mining- and smelting-impacted lacustrine 
environments of the Bolivian Altiplano. Appl. Geochemistry 31, 60–78. 
https://doi.org/10.1016/j.apgeochem.2012.12.006 

Tessier A., Campbell P.G.C., Bisson M. (1979) Sequential extraction procedure for the 
speciation of particulate trace metals. Anal. Chem. 51, 844–851. 
https://doi.org/10.1021/ac50043a017 

Thamdrup B., Fossing H., Jørgensen B.B. (1994) Manganese, iron, and sulfur cycling in a 
coastal marine sediment. Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58, 5115–29. 

Torres E., Auleda M. (2013) A sequential extraction procedure for sediments affected by acid 
mine drainage. J. Geochemical Explor. 128, 35–41. 

Tovar-Sánchez A., Duarte C.M., Alonso J.C., Lacorte S., Tauler R., Galban-Malagón C. (2010) 
Impacts of metals and nutrients released from melting multiyear Arctic sea ice. J. Geophys. 

Res. 115, C07033. https://doi.org/10.1029/2009JC005685 
Tranter M. (2003) Geochemical Weathering in Glacial and Proglacial Environments. Treatise on 

Geochemistry 5, 189-205. 
Tranter M., Huybrechts P., Munhoven G., Sharp M.J., Brown G.H., Jones I.W., Hodson A.J., 

Hodgkins R., Wadham J.L. (2002) Direct effect of ice sheets on terrestrial bicarbonate, 
sulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric 
CO 2 concentrations. Chem. Geol. 190, 33–44. 

Tribovillard N., Algeo T.J., Lyons T., Riboulleau A. (2006) Trace metals as paleoredox and 
paleoproductivity proxies: An update. Chem. Geol. 232, 12–32. 
https://doi.org/10.1016/j.chemgeo.2006.02.012 

Tucker M.D., Barton L.L., Thomson B.M. (1997) Reduction and immobilization of molybdenum 
by Desulfovibrio desulfuricans. J. Environ. Qual. 26, 1146–1152. 
https://doi.org/10.2134/jeq1997.00472425002600040029x 

Vandieken V., Nickel M., Jørgensen B.B. (2006) Carbon mineralization in Arctic sediments 
northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory 
pathways. Mar. Ecol. Prog. Ser. 322, 15–27. https://doi.org/10.3354/meps322015 

Wadham J.L., Bottrell S., Tranter M., Raiswell R. (2004) Stable isotope evidence for microbial 
sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sci. Lett. 
219, 341–355. https://doi.org/10.1016/S0012-821X(03)00683-6 



 56 

Wadham J.L., Cooper R.J., Tranter M., Hodgkins R. (2001) Enhancement of glacial solute fluxes 
in the proglacial zone of a polythermal glacier. J. Glaciol. 47, 378–386. 
https://doi.org/10.3189/172756501781832188 

Wadham J.L., Tranter M., Skidmore M., Hodson A.J., Priscu J., Lyons W.B., Sharp M., Wynn 
P., Jackson M. (2010) Biogeochemical weathering under ice: Size matters. Global 

Biogeochem. Cycles 24, GB3025. https://doi.org/10.1029/2009GB003688 
Wehrmann L.M., Formolo M.J., Owens J.D., Raiswell R., Ferdelman T.G., Riedinger N., Lyons 

T.W. (2014) Iron and manganese speciation and cycling in glacially influenced high-
latitude fjord sediments (West Spitsbergen, Svalbard): Evidence for a benthic recycling-
transport mechanism. Geochim. Cosmochim. Acta 141, 628–655. 
https://doi.org/10.1016/j.gca.2014.06.007 

Wehrmann L.M., Riedinger N., Brunner B., Kamyshny A., Hubert C.R.J., Herbert L.C., Brüchert 
V., Jørgensen B.B., Ferdelman T.G., Formolo M.J. (2017) Iron-controlled oxidative sulfur 
cycling recorded in the distribution and isotopic composition of sulfur species in glacially 
influenced fjord sediments of west Svalbard. Chem. Geol. 466, 678–695. 
https://doi.org/10.1016/j.chemgeo.2017.06.013 

Widerlund A. (1996) Early diagenetic remobilization of copper in near-shore marine sediments: 
a quantitative pore-water model. Mar. Chem. 54, 41–53. 

Wynn P.M., Hodson A., Heaton T. (2006) Chemical and isotopic switching within the subglacial 
environment of a High Arctic glacier. Biogeochemistry 78, 173–193. 
https://doi.org/10.1007/s10533-005-3832-0 

Zaborska A., Pempkowiak J., Papucci C. (2006) Some sediment characteristics and 
sedimentation rates in an Arctic fjord (Kongsfjorden, Svalbard). Annu. Environ. Prot. 8, 79–
96. 

Zaggia L., Zonta R. (1997) Metal-sulphide formation in the contaminated anoxic sludge of the 
Venice canals. Appl. Geochemistry 12, 527–536. 

Zajączkowski M., Szczuciński W., Bojanowski R. (2004) Recent changes in sediment 
accumulation rates in Adventfjorden, Svalbard. Oceanologia 46, 217–231. 

Zegeye A., Bonneville S., Benning L.G., Sturm A., Fowle D.A., Jones C., Canfield D.E., Ruby 
C., MacLean L.C., Nomosatryo S., Crowe S.A., Poulton S.W. (2012) Green rust formation 
controls nutrient availability in a ferruginous water column. Geology 40, 599–602. 
https://doi.org/10.1130/G32959.1 

Zemp M., Huss M., Thibert E., Eckert N., McNabb R., Huber J., Barandun M., Machguth H., 
Nussbaumer S. U., Gärtner-Roer I., Thomson L., Paul F., Maussion F., Kutuzov S. and 
Cogley J. G. (2019) Global glacier mass changes and their contributions to sea-level rise 
from 1961 to 2016. Nature 568, 382–386. 

Zheng Y., Anderson R.F., van Geen A., Fleisher M.Q. (2002) Remobilization of authigenic 
uranium in marine sediments by bioturbation. Geochim. Cosmochim. Acta 66, 1759–1772. 
https://doi.org/10.1016/S0016-7037(01)00886-9 

Zheng Y., Anderson R.F., van Geen A., Kuwabara J. (2000) Authigenic molybdenum formation 
in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochim. 

Cosmochim. Acta 64, 4165–4178. https://doi.org/10.1016/S0016-7037(00)00495-6 
Ziaja W. (2001) Glacial Recession in Sørkappland and Central Nordenskiöldland, Spitsbergen, 

Svalbard, during the 20th Century. Arctic, Antarct. Alp. Res. 33, 36–41. 



 57 

Figure captions 

Figure 1. Map of Van Mijenfjorden (VM) and Van Keulenfjorden (VK) showing the locations 
of the coring stations (VM-In, -Mid, and -Out, VK- In, -Mid, and -Out) and major meltwater 
inputs, as listed in Table 1: A) Berseliusdalen, B) Reindalen, C) Kjellströmdalen, D) Paulabreen, 
E) Danzigdalen, F) Steenstrupdalen, G) Doktorbreen, H) Liestølbreen, I) Nathorstbreen, and J) 
Penckbreen. References: Hjelle, 1993; Wehrmann et al., 2014; http://svalbardkartet.npolar.no. 
 
Figure 2. Profiles of cesium-137 at VM-In (a) and VK-In (d), excess lead-210 at VM-In (b) and 
VK-In (e), and the natural log of the excess lead-210 at VM-In (c) with a fitted linear regression, 
from which the sediment accumulation rate was calculated.  
 
Figure 3. Sulfate reduction rates with depth at the inner, middle, and outer sites in VM and VK. 

Figure 4. Depth profiles at the inner, middle, and outer sites of porewater sulfate concentrations 
in VM (a) and VK (d), acid-volatile sulfide (AVS) content in VM (b) and VK (e), and 
chromium-reducible sulfur (CRS) content in VM (c) and VK (f). 
 
Figure 5. Depth profiles of pore water Fe (open circles) and solid phase Fe content in the acid-
soluble, easily reducible, reducible, and oxidizable fractions (connected lines) at VM-In, -Mid, 
and -Out (a-c) and VK-In, -Mid, and -Out (d-f). The total solid content is the sum of the four 
fractions and shown as shaded areas. 
 
Figure 6. Depth profiles of pore water Mn (open circles) and solid phase Mn content in the 
exchangeable, acid-soluble, easily reducible, reducible, and oxidizable fractions (connected 
lines) at VM-In, -Mid, and -Out (a-c) and VK-In, -Mid, and -Out (d-f). The total solid content is 
the sum of the five fractions and shown as a shaded area. 
 
Figure 7. Depth profiles of pore water Co (open circles) and solid phase Co content in the 
exchangeable, acid-soluble, easily reducible, reducible, and oxidizable fractions (connected 
lines) at VM-In, -Mid, and -Out (a-c) and VK-In, -Mid, and -Out (d-f). The total solid content is 
the sum of the five fractions and shown as a shaded area. 
 
Figure 8. Depth profiles of pore water Ni (open circles) and solid phase Ni content in the 
exchangeable, acid-soluble, easily reducible, reducible, and oxidizable fractions (connected 
lines) at VM-In, -Mid, and -Out (a-c) and VK-In, -Mid, and -Out (d-f). The total solid content is 
the sum of the five fractions and shown as a shaded area. 
 
Figure 9. Depth profiles of pore water Cu (open circles) and solid phase Cu content in the 
exchangeable, acid-soluble, easily reducible, reducible, and oxidizable fractions (connected 
lines) at VM-In, -Mid, and -Out (a-c) and VK-In, -Mid, and -Out (d-f). The total solid content is 
the sum of the five fractions and shown as a shaded area. 
 
Figure 10. Depth profiles of pore water U (open circles) and total solid phase U content in the 
exchangeable, acid-soluble, easily reducible, reducible, and oxidizable fractions (connected 
lines) at VM-In, -Mid, and -Out (a-c) and VK-In, -Mid, and -Out (d-f). The total solid content is 
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the sum of the five fractions and shown as a shaded area. Black triangles on the pore water 
concentration axes indicate average seawater values. 
 
Figure 11. Depth profiles of pore water Mo (open circles) and solid phase Mo content in the 
exchangeable, acid-soluble, easily reducible, reducible, and oxidizable fractions (connected 
lines) at VM-In, -Mid, and -Out (a-c) and VK-In, -Mid, and -Out (d-f). The total solid content is 
the sum of the five fractions and shown as a shaded area. Black triangles on the pore water 
concentration axes indicate average seawater values. 
 
Figure 12. Depth profiles of pore water As (open circles) and solid phase As content in the acid-
soluble, easily reducible, reducible, and oxidizable fractions (connected lines) at VM-In, -Mid, 
and -Out (a-c) and VK-In, -Mid, and -Out (d-f). The total solid content is the sum of the four 
fractions and shown as a shaded area.\ 
 
Figure 13. A schematic diagram illustrating a) differences in source sediment between the two 
fjords in this study related to glacial input via meltwater streams in VM and a tidewater glacier in 
VK, b) the head-to-mouth gradients in fjord sediment Fe, Mn, and sulfur cycling as controlled by 
organic carbon availability (i.e. the concentration of labile organic carbon per unit volume of 
sediment) and sediment accumulation rate, and c) the predominant biogeochemical behaviors of 
Co, Ni, Cu, U, Mo, and As interacting with the Fe/Mn-(oxy)hydroxide (-OHO), sulfide mineral 
(e.g. monosulfides, pyrite), and pore water pools within the sediment at the glacially influenced 
inner fjord regions compared to the marine-influenced outer fjord regions. 
 
Supplemental Figure S1. Depth profiles of total organic carbon (TOC) and total inorganic 
carbon (TIC) in dry weight percent at the inner, middle, and outer sites in VM and VK. 
 
Supplemental Figure S2. Depth profile of pore water chloride concentrations at the inner, 
middle, and outer sites in VM and VK. 
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Table 1. Information on size, depth, glacial input, and geology of the fjords sampled in this study. References: Hjelle, 1993; 
Wehrmann et al., 2014; http://svalbardkartet.npolar.no. “Program station name” refers to the name of the station given during the 
sampling expedition, provided here for cross-reference with other data collected during the same expedition. “Station name” is the 
name given within the context of this paper alone. Note: In the column “Major meltwater inputs,” a name ending with –dalen is a 
valley that was previously glaciated but now funnels a system of meltwater streams, while a –breen is a glacier connected to the fjord 
by meltwater stream 
 

 
 

Fjord 
Length x 

Width (km) 

Tidewater 

glaciers 

Major meltwater 

inputs 
Bedrock lithology 

Program 

station name 

Station 

name 

Water 

depth (m) 

Van Mijenfjorden 55x10 Paulabreen 

Kjellströmdalen, 
Reindalen, 

Berzeliusdalen, 
Fridtjovbreen 

Clastic sedimentary 
rock, calcareous and 
dolomitic limestone, 

shale, sandstone, 
siltstone, carbonaceous 

phyllites, coal 

AF VM-In 63 

AG VM-Mid 69.8 

AH VM-Out 116 

Van 

Keulenfjorden 
40 x 7.5 

Nathorstbreen, 
Doktorbreen 

Penckbreen 

Clastic sedimentary 
rock, shale, siltstone, 
sandstone, dolomite, 
red conglomerates, 
chert, arkostic and 

lithic arenites 

HA VK-In 25.7 

AC VK-Mid 55.6 

AB VK-Out 100 



 60 

Table 2. Description of the sequential extraction procedure applied in this study. 
 
  

Fraction Reagents Chemical Grade Reference 

Exchangeable 1 M MgCl2 
Puratronic 99.999% 

(metals basis) 

Tessier et al., 1979; Heron et al., 
1994;  

Poulton and Canfield, 2005 

Acid-soluble 

1 M sodium acetate, 
pH = 4.5 adjusted 
with acetic acid 

Sodium acetate: Puratronic, 
99.985% (metals basis) 

Acetic acid: Glacial, trace 
metal grade 

Tessier et al., 1979; Poulton and 
Canfield, 2005 

Easily 

reducible 

1 M hydroxylamine ∙ 
HCl 

99.999% trace metals basis 
Chester and Hughes, 1967; Tessier et 

al., 1979;  
Poulton and Canfield, 2005 

Reducible 
50g/L dithionite  

buffered with citrate 
Sodium hydrosulfite: 

Laboratory grade 
Mehra and Jackson, 1960; Poulton 

and Canfield, 2005 

Oxidizable 

8.8 M H2O2, pH = 2-3 
1M ammonium 
acetate, pH=2 

adjusted w/ nitric acid 

Ammonium acetate: 
99.999% trace metals basis 

H2O2: Suprapur 

Gupta and Chen, 1975; Tessier et al., 
1979 
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Table 3. Average total inorganic carbon (TIC), total organic carbon (TOC), and total 

organic carbon to total nitrogen ratio (C/N) ± one standard deviation at all sites. 

 

Fjord Site 
TIC 

(wt. % C) 

TOC 

(wt. % C) 

C/N  

(mol mol-1) 

Van Mijenfjorden VM-In 2.03 ± 0.14 1.99 ± 0.14 20.4 ± 0.54 

 VM-Mid 1.90 ± 0.11 1.83 ± 0.11 17.4 ± 1.4 

 VM-Out 1.95 ± 0.09 1.82 ± 0.12 16.2 ± 0.84 

Van Keulenfjorden VK-In 1.81 ± 0.06 1.59 ± 0.06 19.1 ± 1.4 

 VK-Mid 2.01 ± 0.12 1.58 ±0.12 18.3 ± 1.3 

 VK-Out 2.26 ±0.13 1.76 ± 0.09 17.8 ± 0.99 

 
 

 



Declaration of interests 

 

 The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 

☐The authors declare the following financial interests/personal relationships which may be considered 

as potential competing interests:  

 

 
 
 

 

 


