113 research outputs found

    The application of satellite data in the determination of ocean temperatures and cloud characteristics and statistics

    Get PDF
    The author has identified the following significant results. The major shortcoming of the data was the loss of the infrared radiances from the S191 spectrometer. The cloud thermodynamic phase determination procedure was derived and tested with the data collected by the S192 multispectral scanner. Results of the test indicate a large fraction of the data could be classified thermodynamically. An added bonus was the inclusion of snow in the classification approach. The conclusion to be drawn from this portion of the effort is that in most cases considered ice clouds, liquid water droplet clouds, and snow fields can be spectroscopically separated to a high degree of accuracy

    Status of the MODIS Level 1B Algorithms and Calibration Tables

    Get PDF
    The Moderate Resolution Imaging Spectroradiometer (MODIS) makes observations using 36 spectral bands with wavelengths from 0.41 to 14.4 m and nadir spatial resolutions of 0.25km, 0.5km, and 1km. It is currently operating onboard the NASA Earth Observing System (EOS) Terra and Aqua satellites, launched in December 1999 and May 2002, respectively. The MODIS Level 1B (L1B) program converts the sensor's on-orbit responses in digital numbers to radiometrically calibrated and geo-located data products for the duration of each mission. Its primary data products are top of the atmosphere (TOA) reflectance factors for the sensor's reflective solar bands (RSB) and TOA spectral radiances for the thermal emissive bands (TEB). The L1B algorithms perform the TEB calibration on a scan-by-scan basis using the sensor's response to the on-board blackbody (BB) and other parameters which are stored in Lookup Tables (LUTs). The RSB calibration coefficients are processed offline and regularly updated through LUTs. In this paper we provide a brief description of the MODIS L1B calibration algorithms and associated LUTs with emphasis on their recent improvements and updates developed for the MODIS collection 5 processing. We will also discuss sensor on-orbit calibration and performance issues that are critical to maintaining L1B data product quality, such as changes in the sensor's response versus scan-angle

    Isotope shift in the electron affinity of chlorine

    Full text link
    The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl has been determined by tunable laser photodetachment spectroscopy to be -0.51(14) GHz. The isotope shift was observed as a difference in the onset of the photodetachment process for the two isotopes. In addition, the electron affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2 improvement in the accuracy over earlier measurements. Many-body calculations including lowest-order correlation effects demonstrates the sensitivity of the specific mass shift and show that the inclusion of higher-order correlation effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat

    Calculation of the two-photon decay rates of hydrogen-like ions by using B-polynomials

    Full text link
    A new approach is laid out to investigate the two photon atomic transitions. It is based on application of the finite basis solutions constructed from the Bernstein Polynomial (B-Polynomial) sets. We show that such an approach provides a very promising route for the relativistic second- (and even higher-order) calculations since it allows for analytical evaluation of the involved matrices elements. In order to illustrate possible applications of the method and to verify its accuracy, detailed calculations are performed for the 2s_{1/2}-1s_{1/2} transition in neutral hydrogen and hydrogen-like ions, and are compared with the theoretical predictions based on the well-established B-spline-basis-set approach

    Status of Aqua MODIS On-orbit Calibration and Characterization

    Get PDF
    The MODIS Flight Model 1 (FM1) has been in operation for more than two years since its launch onboard the NASA's Earth Observing System (EOS) Aqua spacecraft on May 4, 2002. The MODIS has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.2 micron and 16 thermal emissive bands (TEB) from 3.7 to 14.5 micron. It provides the science community observations (data products) of the Earth's land, oceans, and atmosphere for a board range of applications. Its primary on-orbit calibration and characterization activities are performed using a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) system for the RSB and a blackbody for the TEB. Another on-board calibrator (OBC) known as the spectro-radiometric calibration assembly (SRCA) is used for the instrument's spatial (TEB and RSB) and spectral (RSB only) characterization. We present in this paper the status of Aqua MODIS calibration and characterization during its first two years of on-orbit operation. Discussions will be focused on the calibration activities executed on-orbit in order to maintain and enhance the instrument's performance and the quality of its Level 1B (L1B) data products. We also provide comparisons between Aqua MODIS and Terra MODIS (launched in December, 1999), including their similarity and difference in response trending and optics degradation. Existing data and results show that Aqua MODIS bands 8 (0.412 micron) and 9 (0.443 micron) have much smaller degradation than Terra MODIS bands 8 and 9. The most noticeable feature shown in the RSB trending is that the mirror side differences in Aqua MODIS are extremely small and stable (<0.1%) while the Terra MODIS RSB trending has shown significant mirror side difference and wavelength dependent degradation. The overall stability of the Aqua MODIS TEB is also better than that of the Terra MODIS during their first two years of on-orbit operation

    Quantum Gravity, the Origin of Time and Time's Arrow

    Full text link
    The local Lorentz and diffeomorphism symmetries of Einstein's gravitational theory are spontaneously broken by a Higgs mechanism by invoking a phase transition in the early Universe, at a critical temperature TcT_c below which the symmetry is restored. The spontaneous breakdown of the vacuum state generates an external time and the wave function of the Universe satisfies a time dependent Schrodinger equation, which reduces to the Wheeler-deWitt equation in the classical regime for T<TcT < T_c, allowing a semi-classical WKB approximation to the wave function. The conservation of energy is spontaneously violated for T>TcT > T_c and matter is created fractions of seconds after the big bang, generating the matter in the Universe. The time direction of the vacuum expectation value of the scalar Higgs field generates a time asymmetry, which defines the cosmological arrow of time and the direction of increasing entropy as the Lorentz symmetry is restored at low temperatures.Comment: 37 page

    QED Calculation of E1M1 and E1E2 Transition Probabilities in One-Electron Ions with Arbitrary Nuclear Charge

    Full text link
    The quantum electrodynamical theory of the two-photon transitions in hydrogenlike ions is presented. The emission probability for 2s1/2 -> 2E1+1s1/2 transitions is calculated and compared to the results of the previous calculations. The emission probabilities 2p12 -> E1E2+1s1/2 and 2p1/2 -> E1M1+1s1/2 are also calculated for the nuclear charge Z values 1-100. This is the first calculation of the two latter probabilities. The results are given in two different gauges.Comment: 14 pages, 4 tables, 1 figur

    Supersymmetric Homogeneous Quantum Cosmologies Coupled to a Scalar Field

    Get PDF
    Recent work on N=2N=2 supersymmetric Bianchi type IX cosmologies coupled to a scalar field is extended to a general treatment of homogeneous quantum cosmologies with explicitely solvable momentum constraints, i.e. Bianchi types I, II, VII, VIII besides the Bianchi type IX, and special cases, namely the Friedmann universes, the Kantowski-Sachs space, and Taub-NUT space. Besides the earlier explicit solution of the Wheeler DeWitt equation for Bianchi type IX, describing a virtual wormhole fluctuation, an additional explicit solution is given and identified with the `no-boundary state'.Comment: 23 PAGE

    Melting as a String-Mediated Phase Transition

    Full text link
    We present a theory of the melting of elemental solids as a dislocation-mediated phase transition. We model dislocations near melt as non-interacting closed strings on a lattice. In this framework we derive simple expressions for the melting temperature and latent heat of fusion that depend on the dislocation density at melt. We use experimental data for more than half the elements in the Periodic Table to determine the dislocation density from both relations. Melting temperatures yield a dislocation density of (0.61\pm 0.20) b^{-2}, in good agreement with the density obtained from latent heats, (0.66\pm 0.11) b^{-2}, where b is the length of the smallest perfect-dislocation Burgers vector. Melting corresponds to the situation where, on average, half of the atoms are within a dislocation core.Comment: 18 pages, LaTeX, 3 eps figures, to appear in Phys. Rev.

    Exploring Biorthonormal Transformations of Pair-Correlation Functions in Atomic Structure Variational Calculations

    Full text link
    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of CSFs, many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the MCHF method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double- excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional CAS-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations
    corecore