56,464 research outputs found

    Actors, actions, and initiative in normative system specification

    Get PDF
    The logic of norms, called deontic logic, has been used to specify normative constraints for information systems. For example, one can specify in deontic logic the constraints that a book borrowed from a library should be returned within three weeks, and that if it is not returned, the library should send a reminder. Thus, the notion of obligation to perform an action arises naturally in system specification. Intuitively, deontic logic presupposes the concept of anactor who undertakes actions and is responsible for fulfilling obligations. However, the concept of an actor has not been formalized until now in deontic logic. We present a formalization in dynamic logic, which allows us to express the actor who initiates actions or choices. This is then combined with a formalization, presented earlier, of deontic logic in dynamic logic, which allows us to specify obligations, permissions, and prohibitions to perform an action. The addition of actors allows us to expresswho has the responsibility to perform an action. In addition to the application of the concept of an actor in deontic logic, we discuss two other applications of actors. First, we show how to generalize an approach taken up by De Nicola and Hennessy, who eliminate from CCS in favor of internal and external choice. We show that our generalization allows a more accurate specification of system behavior than is possible without it. Second, we show that actors can be used to resolve a long-standing paradox of deontic logic, called the paradox of free-choice permission. Towards the end of the paper, we discuss whether the concept of an actor can be combined with that of an object to formalize the concept of active objects

    A Reanalysis of the Carbon Abundance in the Translucent Cloud toward HD 24534

    Get PDF
    We have reanalyzed the Goddard High Resolution Spectrograph data set presented by Snow et al. which contains the interstellar intersystem C II] 2325A line through the translucent cloud toward HD 24534 (X Persei). In contrast to the results of Snow et al., we clearly detect the C II] feature at the 3-sigma confidence level and measure a C^+ column density of 2.7 +/- 0.8 x 10^17 cm^-2. Accounting for the C I column density along the line of sight, we find 10^6 C/H = 106 +/- 38 in the interstellar gas toward this star. This gas-phase carbon-to-hydrogen ratio suggests that slightly more carbon depletion may be occurring in translucent as compared to diffuse clouds. The average diffuse-cloud C/H, however, is within the 1-sigma uncertainty of the measurement toward HD 24534. We therefore cannot rule out the possibility that the two cloud types have comparable gas-phase C/H, and therefore comparable depletions of carbon.Comment: 9 pages, 3 figures, to appear in the Astrophysical Journal Letter

    Specifying ODP computational objects in Z

    Get PDF
    The computational viewpoint contained within the Reference Model of Open Distributed Processing (RM-ODP) shows how collections of objects can be configured within a distributed system to enable interworking. It prescribes certain capabilities that such objects are expected to possess and structuring rules that apply to how these objects can be configured with one another. This paper highlights how the specification language Z can be used to formalise these capabilities and the associated structuring rules, thereby enabling specifications of ODP systems from the computational viewpoint to be achieved

    Pair-factorized steady states on arbitrary graphs

    Full text link
    Stochastic mass transport models are usually described by specifying hopping rates of particles between sites of a given lattice, and the goal is to predict the existence and properties of the steady state. Here we ask the reverse question: given a stationary state that factorizes over links (pairs of sites) of an arbitrary connected graph, what are possible hopping rates that converge to this state? We define a class of hopping functions which lead to the same steady state and guarantee current conservation but may differ by the induced current strength. For the special case of anisotropic hopping in two dimensions we discuss some aspects of the phase structure. We also show how this case can be traced back to an effective zero-range process in one dimension which is solvable for a large class of hopping functions.Comment: IOP style, 9 pages, 1 figur

    Atomic Transport in Dense, Multi-Component Metallic Liquids

    Full text link
    Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with incoherent, inelastic neutron scattering. As compared to simple liquids, liquid PdNiCuP is characterized by a dense packing with a packing fraction above 0.5. The intermediate scattering function exhibits a fast relaxation process that precedes structural relaxation. Structural relaxation obeys a time-temperature superposition that extends over a temperature range of 540K. The mode-coupling theory of the liquid to glass transition (MCT) gives a consistent description of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT scaling laws extrapolate to a critical temperature Tc at about 20% below the liquidus temperature. Diffusivities derived from the mean relaxation times compare well with Co diffusivities from recent tracer diffusion measurements and diffsuivities calculated from viscosity via the Stokes-Einstein relation. In contrast to simple metallic liquids, the atomic transport in dense, liquid PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a q^{-2} dependence of the mean relaxation times at intermediate q and a vanishing isotope effect as a result of a highly collective transport mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as fast as in simple liquids at the melting point. However, the difference in the underlying atomic transport mechanism indicates that the diffusion mechanism in liquids is not controlled by the value of the diffusivity but rather by that of the packing fraction

    On the observability of bow shocks of Galactic runaway OB stars

    Full text link
    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from n_ISM=0.01 up to 10.0/cm3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyze them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass (~40 Mo) runaway stars yield Hα\alpha fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow shock nebulae are produced in the denser regions of the ISM. We predict that bow shocks in the field observed at Ha by means of Rayleigh-sensitive facilities are formed around stars of initial mass larger than about 20 Mo. Our models of bow shocks from OB stars have the emission maximum in the wavelength range 3 <= lambda <= 50 micrometer which can be up to several orders of magnitude brighter than the runaway stars themselves, particularly for stars of initial mass larger than 20 Mo.Comment: 13 pages, 12 figures. Accepted to MNRAS (2016

    ANALYSIS OF THE RISK MANAGEMENT PROPERTIES OF GRAZING CONTRACTS VERSUS FUTURES AND OPTION CONTRACTS

    Get PDF
    A stochastic budget simulator and generalized stochastic dominance are used to compare the risk management properties of grazing contracts to futures and option contracts. The results show that the risks of backgrounding feeder cattle are reduced significantly for pasture owners in a grazing contract. However, the risks of the cattle owner in a grazing contract are not significantly reduced. The results show that generally risk adverse pasture owners prefer grazing contracts to integrated production when traditional hedging is used to manage price risks. In addition, grazing contracts compare favorably with put option contracts for some pasture owners.Backgrounding, Futures contracts, Grazing contracts, Options contracts, Risk management, Risk and Uncertainty,
    • …
    corecore