8,567 research outputs found

    Moderate temperature detector development

    Get PDF
    P-side backside reflecting constant, photodiode characterization, and photodiode diffusion and G-R currents were investigated in an effort to develop an 8 m to 12 m infrared quantum detector using mercury cadmium telluride. Anodization, phosphorus implantation, and the graded band gap concept were approaches considered for backside formation. Variable thickness diodes were fabricated with a back surface anodic oxide to investigate the effect of this surface preparation on the diffusion limited zero bias impedance. A modeling technique was refined to thoroughly model diode characteristics. Values for the surface recombination velocity in the depletion region were obtained. These values were improved by implementing better surface damage removal techniques

    Spin detection at elevated temperatures using a driven double quantum dot

    Get PDF
    We consider a double quantum dot in the Pauli blockade regime interacting with a nearby single spin. We show that under microwave irradiation the average electron occupations of the dots exhibit resonances that are sensitive to the state of the nearby spin. The system thus acts as a spin meter for the nearby spin. We investigate the conditions for a non-demolition read-out of the spin and find that the meter works at temperatures comparable to the dot charging energy and sensitivity is mainly limited by the intradot spin relaxation.Comment: 8 pages, 6 figure

    The Statistics of the BATSE Spectral Features

    Get PDF
    The absence of a BATSE line detection in a gamma-ray burst spectrum during the mission's first six years has led to a statistical analysis of the occurrence of lines in the BATSE burst database; this statistical analysis will still be relevant if lines are detected. We review our methodology, and present new simulations of line detectability as a function of the line parameters. We also discuss the calculation of the number of ``trials'' in the BATSE database, which is necessary for our line detection criteria.Comment: 5 pages, 2 figures, AIPPROC LaTeX, to appear in "Gamma-Ray Bursts, 4th Huntsville Symposium," eds. C. Meegan, R. Preece and T. Koshu

    Persistent termini of 2004- and 2005-like ruptures of the Sunda megathrust

    Get PDF
    To gain insight into the longevity of subduction zone segmentation, we use coral microatolls to examine an 1100-year record of large earthquakes across the boundary of the great 2004 and 2005 Sunda megathrust ruptures. Simeulue, a 100-km-long island off the west coast of northern Sumatra, Indonesia, straddles this boundary: northern Simeulue was uplifted in the 2004 earthquake, whereas southern Simeulue rose in 2005. Northern Simeulue corals reveal that predecessors of the 2004 earthquake occurred in the 10th century AD, in AD 1394 ± 2, and in AD 1450 ± 3. Corals from southern Simeulue indicate that none of the major uplifts inferred on northern Simeulue in the past 1100 years extended to southern Simeulue. The two largest uplifts recognized at a south-central Simeulue site—around AD 1422 and in 2005—involved little or no uplift of northern Simeulue. The distribution of uplift and strong shaking during a historical earthquake in 1861 suggests the 1861 rupture area was also restricted to south of central Simeulue, as in 2005. The strikingly different histories of the two adjacent patches demonstrate that this boundary has persisted as an impediment to rupture through at least seven earthquakes in the past 1100 years. This implies that the rupture lengths, and hence sizes, of at least some future great earthquakes and tsunamis can be forecast. These microatolls also provide insight into megathrust behavior between earthquakes, revealing sudden and substantial changes in interseismic strain accumulation rates

    Enhanced electron correlations, local moments, and Curie temperature in strained MnAs nanocrystals embedded in GaAs

    Full text link
    We have studied the electronic structure of hexagonal MnAs, as epitaxial continuous film on GaAs(001) and as nanocrystals embedded in GaAs, by Mn 2p core-level photoemission spectroscopy. Configuration-interaction analyses based on a cluster model show that the ground state of the embedded MnAs nanocrystals is dominated by a d5 configuration that maximizes the local Mn moment. Nanoscaling and strain significantly alter the properties of MnAs. Internal strain in the nanocrystals results in reduced p-d hybridization and enhanced ionic character of the Mn-As bonding interactions. The spatial confinement and reduced p-d hybridization in the nanocrystals lead to enhanced d-electron localization, triggering d-d electron correlations and enhancing local Mn moments. These changes in the electronic structure of MnAs have an advantageous effect on the Curie temperature of the nanocrystals, which is measured to be remarkably higher than that of bulk MnAs.Comment: 4 figures, 2 table

    Coherence of Spin Qubits in Silicon

    Full text link
    Given the effectiveness of semiconductor devices for classical computation one is naturally led to consider semiconductor systems for solid state quantum information processing. Semiconductors are particularly suitable where local control of electric fields and charge transport are required. Conventional semiconductor electronics is built upon these capabilities and has demonstrated scaling to large complicated arrays of interconnected devices. However, the requirements for a quantum computer are very different from those for classical computation, and it is not immediately obvious how best to build one in a semiconductor. One possible approach is to use spins as qubits: of nuclei, of electrons, or both in combination. Long qubit coherence times are a prerequisite for quantum computing, and in this paper we will discuss measurements of spin coherence in silicon. The results are encouraging - both electrons bound to donors and the donor nuclei exhibit low decoherence under the right circumstances. Doped silicon thus appears to pass the first test on the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200

    Large Scale Electronic Structure Calculations with Multigrid Acceleration

    Full text link
    We have developed a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods permit efficient calculations on ill-conditioned systems with long length scales or high energy cutoffs. The technique has been applied to systems containing up to 100 atoms, including a highly elongated diamond cell, an isolated C60_{60} molecule, and a 32-atom cell of GaN with the Ga d-states in valence. The method is well suited for implementation on both vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur

    Non-linear Evolution of f(R) Cosmologies III: Halo Statistics

    Full text link
    The statistical properties of dark matter halos, the building blocks of cosmological observables associated with structure in the universe, offer many opportunities to test models for cosmic acceleration, especially those that seek to modify gravitational forces. We study the abundance, bias and profiles of halos in cosmological simulations for one such model: the modified action f(R) theory. In the large field regime that is accessible to current observations, enhanced gravitational forces raise the abundance of rare massive halos and decrease their bias but leave their (lensing) mass profiles largely unchanged. This regime is well described by scaling relations based on a modification of spherical collapse calculations. In the small field regime, enhanced forces are suppressed inside halos and the effects on halo properties are substantially reduced for the most massive halos. Nonetheless, the scaling relations still retain limited applicability for the purpose of establishing conservative upper limits on the modification to gravity.Comment: 12 pages, 10 figures; v2: revised version accepted by Phys. Rev.
    • …
    corecore