31,168 research outputs found

    Classification of finite dimensional modules of singly atypical type over the Lie superalgebras sl(m/n)

    Full text link
    We classify the finite dimensional indecomposable sl(m/n)-modules with at least a typical or singly atypical primitive weight. We do this classification not only for weight modules, but also for generalized weight modules. We obtain that such a generalized weight module is simply a module obtained by ``linking'' sub-quotient modules of generalized Kac-modules. By applying our results to sl(m/1), we have in fact completely classified all finite dimensional sl(m/1)-modules.Comment: 17 pages, Late

    Exact moments in a continuous time random walk with complete memory of its history

    Full text link
    We present a continuous time generalization of a random walk with complete memory of its history [Phys. Rev. E 70, 045101(R) (2004)] and derive exact expressions for the first four moments of the distribution of displacement when the number of steps is Poisson distributed. We analyze the asymptotic behavior of the normalized third and fourth cumulants and identify new transitions in a parameter regime where the random walk exhibits superdiffusion. These transitions, which are also present in the discrete time case, arise from the memory of the process and are not reproduced by Fokker-Planck approximations to the evolution equation of this random walk.Comment: Revtex4, 10 pages, 2 figures. v2: applications discussed, clarity improved, corrected scaling of third momen

    Daylight quantum key distribution over 1.6 km

    Get PDF
    Quantum key distribution (QKD) has been demonstrated over a point-to-point 1.6\sim1.6-km atmospheric optical path in full daylight. This record transmission distance brings QKD a step closer to surface-to-satellite and other long-distance applications.Comment: 4 pages, 2 figures, 1 table. Submitted to PRL on 14 January 2000 for publication consideratio

    Variational Two Fermion Wave Equations in QED: Muonium Like Systems

    Full text link
    We consider a reformulation of QED in which covariant Green functions are used to solve for the electromagnetic field in terms of the fermion fields. The resulting modified Hamiltonian contains the photon propagator directly. A simple Fock-state variational trial function is used to derive relativistic two-fermion equations variationally from the expectation value of the Hamiltonian of the field theory. The interaction kernel of the equation is shown to be, in essence, the invariant M-matrix in lowest order. Solutions of the two-body equations are presented for muonium like system for small coupling strengths. The results compare well with the observed muonium spectrum, as well as that for hydrogen and muonic hydrogen. Anomalous magnetic moment effects are discussed

    Transverse Asymmetry A_T′ from the Quasielastic ^3He(e,e′) Process and the Neutron Magnetic Form Factor

    Get PDF
    We have measured the transverse asymmetry A_T′ in ^3He(e,e′) quasielastic scattering in Hall A at Jefferson Laboratory with high precision for Q^2 values from 0.1 to 0.6 (GeV/c)^2. The neutron magnetic form factor GMn was extracted based on Faddeev calculations for Q^2 = 0.1 and 0.2 (GeV/c)^2 with an experimental uncertainty of less than 2%

    Extreme times in financial markets

    Get PDF
    We apply the theory of continuous time random walks to study some aspects of the extreme value problem applied to financial time series. We focus our attention on extreme times, specifically the mean exit time and the mean first-passage time. We set the general equations for these extremes and evaluate the mean exit time for actual data.Comment: 6 pages, 3 figure

    Chandra Observations of the Crab-like Supernova Remnant G21.5-0.9

    Get PDF
    Chandra observations of the Crab-like supernova remnant G21.5-0.9 reveal a compact central core and spectral variations indicative of synchrotron burn-off of higher energy electrons in the inner nebula. The central core is slightly extended, perhaps indicating the presence of an inner wind-shock nebula surrounding the pulsar. No pulsations are observed from the central region, yielding an upper limit of ~40% for the pulsed fraction. A faint outer shell may be the first evidence of the expanding ejecta and blast wave formed in the initial explosion, indicating a composite nature for G21.5-0.9.Comment: 4 pages, 2 figures, formatted with emulateapj, submitted to ApJ

    Consequences of gravitational radiation recoil

    Get PDF
    Coalescing binary black holes experience an impulsive kick due to anisotropic emission of gravitational waves. We discuss the dynamical consequences of the recoil accompanying massive black hole mergers. Recoil velocities are sufficient to eject most coalescing black holes from dwarf galaxies and globular clusters, which may explain the apparent absence of massive black holes in these systems. Ejection from giant elliptical galaxies would be rare, but coalescing black holes are displaced from the center and fall back on a time scale of order the half-mass crossing time. Displacement of the black holes transfers energy to the stars in the nucleus and can convert a steep density cusp into a core. Radiation recoil calls into question models that grow supermassive black holes from hierarchical mergers of stellar-mass precursors.Comment: 5 pages, 4 figures, emulateapj style; minor changes made; accepted to ApJ Letter
    corecore