Coalescing binary black holes experience an impulsive kick due to anisotropic
emission of gravitational waves. We discuss the dynamical consequences of the
recoil accompanying massive black hole mergers. Recoil velocities are
sufficient to eject most coalescing black holes from dwarf galaxies and
globular clusters, which may explain the apparent absence of massive black
holes in these systems. Ejection from giant elliptical galaxies would be rare,
but coalescing black holes are displaced from the center and fall back on a
time scale of order the half-mass crossing time. Displacement of the black
holes transfers energy to the stars in the nucleus and can convert a steep
density cusp into a core. Radiation recoil calls into question models that grow
supermassive black holes from hierarchical mergers of stellar-mass precursors.Comment: 5 pages, 4 figures, emulateapj style; minor changes made; accepted to
ApJ Letter