6,385 research outputs found

    On the origin of satellite swarms

    Get PDF
    For a species to develop in nature, two basically two things are needed: an enabling technology and a "niche". In spacecraft design the story is basically the same. Both a suitable technology and a niche application need to be there before a new generation of spacecraft can be developed. Last century two technologies have emerged that had and still have a huge impact on the development of technical systems: Micro-Electronics (ME) and Micro-Systems Technology (MST). Both are ruled by Moore's Law that indicates that considerable technology updates appear at the pace of years or even months instead of decades. Systems that need a development time of more than a few years will inevitably be based on "out-dated" and thereby difficult to maintain and repair technology unless during the development constant redesigns are made. This makes the development of the system at least very expensive. Although expenses do not seem to be a frequent show stopper in the design of spacecraft, it is still very interesting to investigate what system architectures might evolve when the specific properties of the new technologies ME and MST are fully exploited. ME presently offers more than 2 billion transistors on a chip and MST offers mechanical systems like resonators, mechanical switches, propulsions units, gyroscopes and many other sensors that _t in a volume of a few square millimeters to a few centimeters. So it is possible to fit a lot of signal processing power together with the necessary sensors and actuators in a volume that is really very small compared to any know space system. Of course state-of-the art spacecraft will immediately outperform these units in all aspects apart from cost and quantity. For the _rst time it makes sense to envisage the operation of formations of tens to hundreds of satellites that are cheap because they are based on standard commercial COTS technology and system designs. These satellite swarms will not be the systems that replace all other space systems. But, like in nature, there is a niche where swarms are the optimal solution. It's time to start occupying this niche. Typical properties of a swarm in nature are robustness, redundancy, large area coverage, the lack a hierarchical command structure, limited processing power per unit and self-organization ("swarm-intelligence"). This paper discusses the technological trends that lead to satellite swarms, where they can go and what new science they can create

    A high-Tc 4-bit periodic threshold analog-to-digital converter

    Get PDF
    Using ramp-type Josephson junctions a 4-bit periodic threshold ADC has been designed, fabricated and tested. Practical design constraints will be discussed in terms of noise immunity, flux flow, available technology, switching speed etc. In a period of four years we fabricated about 100 chips in order to bring the technology to an acceptable level and to test various designs and circuit layouts. This resulted in a basic comparator that is rather insensitive to the stray field generated by the analog input signal or variations in mask alignment during fabrication. The input signal is fed into the comparators using a resistive divider network. Full functionality at low frequencies has been demonstrate

    Engineering of surfaces and interfaces using low energy ions

    Get PDF
    Abstract in thesis

    Comment to the paper "Radiation induced by relativistic electrons propagating through random layered stacks: Numerical simulation results" by A.A.Varfolomeev and et al NIM B 256,705 (2007)

    Full text link
    We show that the numerical code used in the above mentioned paper does not take into account the multiple scattering effects of electromagnetic field properly and is therefore incorrect.Comment: 2pages,submitted to NIM

    An HTS Quasi-One junction SQUID-based periodic threshold comparator for a 4-bit superconductive flash A/D converter

    Get PDF
    An all high-Tc periodic threshold comparator for application in a 4-bit superconductive A/D converter has been realized and tested. The theoretical threshold curve of the comparator is calculated and compared to the measured results. Furthermore, the thermal noise immunity and the influence of flux-flow are considered, resulting in practical design constraints for the comparator circui

    Integration of a generalized H\'enon-Heiles Hamiltonian

    Full text link
    The generalized H\'enon-Heiles Hamiltonian H=1/2(PX2+PY2+c1X2+c2Y2)+aXY2bX3/3H=1/2(P_X^2+P_Y^2+c_1X^2+c_2Y^2)+aXY^2-bX^3/3 with an additional nonpolynomial term μY2\mu Y^{-2} is known to be Liouville integrable for three sets of values of (b/a,c1,c2)(b/a,c_1,c_2). It has been previously integrated by genus two theta functions only in one of these cases. Defining the separating variables of the Hamilton-Jacobi equations, we succeed here, in the two other cases, to integrate the equations of motion with hyperelliptic functions.Comment: LaTex 2e. To appear, Journal of Mathematical Physic

    Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy

    Get PDF
    We use cathodoluminescence imaging spectroscopy to excite surface plasmon polaritons and measure their decay length on single crystal and polycrystalline gold surfaces. The surface plasmon polaritons are excited on the gold surface by a nanoscale focused electron beam and are coupled into free space radiation by gratings fabricated into the surface. By scanning the electron beam on a line perpendicular to the gratings, the propagation length is determined. Data for single-crystal gold are in agreement with calculations based on dielectric constants. For polycrystalline films, grain boundary scattering is identified as additional loss mechanism, with a scattering coefficient SG=0.2%

    Turning Gigabytes into Gigs: “Songification” and Live Music Data

    Get PDF
    Complex data is challenging to understand when it is represented as written communication even when it is structured in a table. How- ever, choosing to represent data in creative ways can aid our under- standing of complex ideas and patterns. In this regard, the creative industries have a great deal to offer data-intensive scholarly disci- plines. Music, for example, is not often used to interpret data, yet the rhythmic nature of music lends itself to the representation and anal- ysis of temporal data.Taking the music industry as a case study, this paper explores how data about historical live music gigs can be analysed, extend- ed and re-presented to create new insights. Using a unique process called ‘songification’ we demonstrate how enhanced auditory data design can provide a medium for aural intuition. The case study also illustrates the benefits of an expanded and inclusive view of research; in which computation and communication, method and media, in combination enable us to explore the larger question of how we can employ technologies to produce, represent, analyse, deliver and exchange knowledge

    Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro

    Get PDF
    Sphagnum-dominated peatlands head the list of ecosystems with the largest known reservoirs of organic carbon (C). The bulk of this C is stored in decomposition-resistant litter of one bryophyte genus: Sphagnum. Understanding how Sphagnum litter chemistry controls C mineralization is essential for understanding potential interactions between environmental changes and C mineralization in peatlands. We aimed to separate the effects of phenolics from structural polysaccharides on decay of Sphagnum. Wemeasured aerobic microbial respiration of different moss litter types in a lab. We used chemical treatments to step-wise remove the chemical compounds thought to be important in decay-resistance in three taxonomically distant moss genera. We also focused on the effect of Sphagnum-specific cell-wall pectin-like polysaccharides (sphagnan) on C and N mineralization. Removing polymeric lignin-like phenolics had only negligible effects on C mineralization of Sphagnum litter, but increased mineralization of two other bryophyte genera, suggesting a minor role of these phenolics in decay resistance of Sphagnum but a major role of cell-wall polysaccharides. Carboxyl groups of pectin-like polysaccharides represented a C-source in non-Sphagnum litters but resisted decay in Sphagnum. Finally, isolated sphagnan did not serve as C-source but inhibited C and N mineralization instead, reminiscent of the effects reported for phenolics in other ecosystems. Our results emphasize the role of polysaccharides in resistance to, and active inhibition of, microbial mineralization in Sphagnum-dominated litter. As the polysaccharides displayed decay-inhibiting properties hitherto associated with phenolics (lignin, polyphenols), it raises the question if polysaccharide- dominated litter also shares similar environmental controls on decomposition, such as temperature or nutrient and water availabilit
    corecore