421 research outputs found

    Malaltia de Parkinson. Un exemple de l'evolució dels coneixements mèdics

    Get PDF

    Intrinsic avalanches and collective phenomena in a Mn(II)-free radical ferrimagnetic chain

    Full text link
    Magnetic hysteresis loops below 300 mK on single crystals of the Mn(II) - nitronyl nitroxide free radical chain (Mn(hfac)_2({\it R})-3MLNN) present abrupt reversals of the magnetization, or avalanches. We show that, below 200 mK, the avalanches occur at a constant field, independent of the sample and so propose that this avalanche field is an intrinsic property. We compare this field to the energy barrier existing in the sample and conclude that the avalanches are provoked by multiple nucleation of domain-walls along the chains. The different avalanche field observed in the zero field cooled magnetization curves suggests that the avalanche mechanisms are related to the competition between ferromagnetic and antiferromagnetic order in this compound.Comment: 9 pages, 7 fig, to be published in Phys. Rev.

    Exchange coupling inversion in a high-spin organic triradical molecule

    Get PDF
    The magnetic properties of a nanoscale system are inextricably linked to its local environment. In ad-atoms on surfaces and inorganic layered structures the exchange interactions result from the relative lattice positions, layer thicknesses and other environmental parameters. Here, we report on a sample-dependent sign inversion of the magnetic exchange coupling between the three unpaired spins of an organic triradical molecule embedded in a three-terminal device. This ferro-to-antiferromagnetic transition is due to structural distortions and results in a high-to-low spin ground state change in a molecule traditionally considered to be a robust high-spin quartet. Moreover, the flexibility of the molecule yields an in-situ electric tunability of the exchange coupling via the gate electrode. These findings open a route to the controlled reversal of the magnetic states in organic molecule-based nanodevices by mechanical means, electrical gating or chemical tailoring

    Subtle competition between ferromagnetic and antiferromagnetic order in a Mn(II) - free radical ferrimagnetic chain

    Full text link
    The macroscopic magnetic characterization of the Mn(II) - nitronyl nitroxide free radical chain (Mn(hfac)2(R)-3MLNN) evidenced its transition from a 1-dimensional behavior of ferrimagnetic chains to a 3-dimensional ferromagnetic long range order below 3 K. Neutron diffraction experiments, performed on a single crystal around the transition temperature, led to a different conclusion : the magnetic Bragg reflections detected below 3 K correspond to a canted antiferromagnet where the magnetic moments are mainly oriented along the chain axis. Surprisingly in the context of other compounds in this family of magnets, the interchain coupling is antiferromagnetic. This state is shown to be very fragile since a ferromagnetic interchain arrangement is recovered in a weak magnetic field. This peculiar behavior might be explained by the competition between dipolar interaction, shown to be responsible for the antiferromagnetic long range order below 3 K, and exchange interaction, the balance between these interactions being driven by the strong intrachain spin correlations. More generally, this study underlines the need, in this kind of molecular compounds, to go beyond macroscopic magnetization measurements.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    Quantitative Thermal Testing Profiles As A Predictor Of Treatment Response To Topical Capsaicin In Patients With Localized Neuropathic Pain

    Get PDF
    There are no reliable predictors of response to treatment with capsaicin. Given that capsaicin application causes heat sensation, differences in quantitative thermal testing (QTT) profiles may predict treatment response. The aim of this study was to determine whether different QTT profiles could predict treatment outcomes in patients with localized peripheral neuropathic pain (PeLNP). We obtained from medical records QTT results and treatment outcomes of 55 patients treated between 2010 and 2013. Warm sensation threshold (WST) and heat pain threshold (HPT) values were assessed at baseline at the treatment site and in the asymptomatic, contralateral area. Responders were defined as those who achieved a > 30% decrease in pain lasting > 30 days. Two distinct groups were identified based on differences in QTT profiles. Most patients (27/31; 87.1%) with a homogenous profile were nonresponders. By contrast, more than half of the patients (13/24, 54.2%) with a nonhomogenous profile were responders (p = 0.0028). A nonhomogenous QTT profile appears to be predictive of response to capsaicin. We hypothesize patients with a partial loss of cutaneous nerve fibers or receptors are more likely to respond. By contrast, when severe nerve damage or normal cutaneous sensations are present, the pain is likely due to central sensitization and thus not responsive to capsaicin. Prospective studies with larger patient samples are needed to confirm this hypothesis

    Crystal size dependence of dipolar ferromagnetic order between Mn6 molecular nanomagnets

    Get PDF
    We study how crystal size influences magnetic ordering in arrays of molecular nanomagnets coupled by dipolar interactions. Compressed fluid techniques have been applied to synthesize crystals of Mn6 molecules (spin S = 12) with sizes ranging from 28 µm down to 220 nm. The onset of ferromagnetic order and the spin thermalization rates have been studied by means of ac susceptibility measurements. We find that the ordered phase remains ferromagnetic, as in the bulk, but the critical temperature Tc decreases with crystal size. Simple magnetostatic energy calculations, supported by Monte Carlo simulations, account for the observed drop in Tc in terms of the minimum attainable energy for finite-sized magnetic domains limited by the crystal boundaries. Frequency-dependent susceptibility measurements give access to the spin dynamics. Although magnetic relaxation remains dominated by individual spin flips, the onset of magnetic order leads to very long spin thermalization time scales. The results show that size influences the magnetism of dipolar systems with as many as 1011 spins and are relevant for the interpretation of quantum simulations performed on finite lattices

    Explicit rate flow control for ABR services in ATM networks

    Full text link

    Engineering DNA-grafted quatsomes as stable nucleic acid-responsive fluorescent nanovesicles

    Get PDF
    The development of artificial vesicles into responsive architectures capable of sensing the biological environment and simultaneously signaling the presence of a specific target molecule is a key challenge in a range of biomedical applications from drug delivery to diagnostic tools. Herein, the rational design of biomimetic DNA-grafted quatsome (QS) nanovesicles capable of translating the binding of a target molecule to amphiphilic DNA probes into an optical output is presented. QSs are synthetic lipid-based nanovesicles able to confine multiple organic dyes at the nanoscale, resulting in ultra-bright soft materials with attractiveness for sensing applications. Dye-loaded QS nanovesicles of different composition and surface charge are grafted with fluorescent amphiphilic nucleic acid-based probes to produce programmable FRET-active nanovesicles that operate as highly sensitive signal transducers. The photophysical properties of the DNA-grafted nanovesicles are characterized and the highly selective, ratiometric detection of clinically relevant microRNAs with sensitivity in the low nanomolar range are demonstrated. The potential applications of responsive QS nanovesicles for biosensing applications but also as functional nanodevices for targeted biomedical applications is envisaged

    Dye-Loaded Quatsomes Exhibiting FRET as Nanoprobes for Bioimaging

    Get PDF
    Fluorescent organic nanoparticles (FONs) are emerging as an attractive alternative to the well-established fluorescent inorganic nanoparticles or small organic dyes. Their proper design allows one to obtain biocompatible probes with superior brightness and high photostability, although usually affected by low colloidal stability. Herein, we present a type of FONs with outstanding photophysical and physicochemical properties in-line with the stringent requirements for biomedical applications. These FONs are based on quatsome (QS) nanovesicles containing a pair of fluorescent carbocyanine molecules that give rise to Förster resonance energy transfer (FRET). Structural homogeneity, high brightness, photostability, and high FRET efficiency make these FONs a promising class of optical bioprobes. Loaded QSs have been used for in vitro bioimaging, demonstrating the nanovesicle membrane integrity after cell internalization, and the possibility to monitor the intracellular vesicle fate. Taken together, the proposed QSs loaded with a FRET pair constitute a promising platform for bioimaging and theranostics
    corecore