407 research outputs found

    Nuclear Condensations of Furan

    Get PDF
    In connection with studies on orientation of furan and the synthesis of beta-substituted furans, condensation reactions have been effected with diazomethane, aryl-diazonium compounds, diazoacetic ester and related types with furan and its derivatives. The condensations in some cases are preceded by 1,2- and 1,4- additions. It appears that the difficulty in preparing simple furan-diazonium compounds is due, in part, to the ready coupling reaction of the diazonium group with the furan nucleus

    The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C

    Get PDF
    In the Paris Agreement on Climate Change, the United Nations is pursuing efforts to limit global warming to 1.5°C, whereas earlier aspirations focused on a 2°C limit. With current pledges, corresponding to ~3.2°C warming, climatically determined geographic range losses of >50% are projected in ~49% of insects, 44% of plants, and 26% of vertebrates. At 2°C, this falls to 18% of insects, 16% of plants, and 8% of vertebrates and at 1.5°C, to 6% of insects, 8% of plants, and 4% of vertebrates. When warming is limited to 1.5°C as compared with 2°C, numbers of species projected to lose >50% of their range are reduced by ~66% in insects and by ~50% in plants and vertebrates

    Tribological Behavior of Nano-Onions in Krytox 143AB Evaluated

    Get PDF
    Nanoparticles have been developed over the past 10 years and have found several applications. This work presents the use of carbon nano-onions as a potential oil additive for aerospace applications. Researchers at the NASA Glenn Research Center tested lubricant lifetimes in ambient air and ultrahigh vacuum and characterized the breakdown products of the friction and wear. These carbon nanoparticles can provide adequate lubrication very similar to that of graphitic material when run in air. Soot represents one of the very first nanostructured materials, although it has rarely been considered as such. Changes in the carbon nanostructure, resulting in increased graphitic layer plane length, correlate with reactivity loss. Upon heating spherically shaped nanometer-sized carbon black in the absence of oxidant, graphene sheets form, and the initial soot particle templates the growth of a graphitic particle into what is best described as a sphere with many flat sides having a hollow interior. Because there are no edge sites, these polygonal graphitic particles, or nano-onions, are relatively resistant to oxidation. Graphite is used as a solid lubricant because of its stability at moderately high temperatures. However, the temperature at which graphite oxidizes rapidly is strongly influenced by surface area. With the size of particles typically employed in lubrication, a great amount of thermal stability is lost because of size reduction either during preparation or during lubrication of contacting parts. Therefore, we have undertaken a study of the lubricating ability of graphitic nano-onions (ref. 1)

    BactMAP:An R package for integrating, analyzing and visualizing bacterial microscopy data

    Get PDF
    High-throughput analyses of single-cell microscopy data are a critical tool within the field of bacterial cell biology. Several programs have been developed to specifically segment bacterial cells from phase-contrast images. Together with spot and object detection algorithms, these programs offer powerful approaches to quantify observations from microscopy data, ranging from cell-to-cell genealogy to localization and movement of proteins. Most segmentation programs contain specific post-processing and plotting options, but these options vary between programs and possibilities to optimize or alter the outputs are often limited. Therefore, we developed BactMAP (Bacterial toolbox for Microscopy Analysis & Plotting), a command-line based R package that allows researchers to transform cell segmentation and spot detection data generated by different programs into various plots. Furthermore, BactMAP makes it possible to perform custom analyses and change the layout of the output. Because BactMAP works independently of segmentation and detection programs, inputs from different sources can be compared within the same analysis pipeline. BactMAP complies with standard practice in R which enables the use of advanced statistical analysis tools, and its graphic output is compatible with ggplot2, enabling adjustable plot graphics in every operating system. User feedback will be used to create a fully automated Graphical User Interface version of BactMAP in the future. Using BactMAP, we visualize key cell cycle parameters in Bacillus subtilis and Staphylococcus aureus, and demonstrate that the DNA replication forks in Streptococcus pneumoniae dissociate and associate before splitting of the cell, after the Z-ring is formed at the new quarter positions. BactMAP is available from https://veeninglab.com/bactmap

    Weather, Not Climate, Defines Distributions of Vagile Bird Species

    Get PDF
    Background\ud \ud Accurate predictions of species distributions are essential for climate change impact assessments. However the standard practice of using long-term climate averages to train species distribution models might mute important temporal patterns of species distribution. The benefit of using temporally explicit weather and distribution data has not been assessed. 1We hypothesized that short-term weather associated with the time a species was recorded should be superior to long-term climate measures for predicting distributions of mobile species.\ud \ud Methodology\ud \ud We tested our hypothesis by generating distribution models for 157 bird species found in Australian tropical savannas (ATS) using modelling algorithm Maxent. The variable weather of the ATS supports a bird assemblage with variable movement patterns and a high incidence of nomadism. We developed “weather” models by relating climatic variables (mean temperature, rainfall, rainfall seasonality and temperature seasonality) from the three month, six month and one year period preceding each bird record over a 58 year period (1950–2008). These weather models were compared against models built using long-term (30 year) averages of the same climatic variables.\ud \ud Conclusions\ud \ud Weather models consistently achieved higher model scores than climate models, particularly for wide-ranging, nomadic and desert species. Climate models predicted larger range areas for species, whereas weather models quantified fluctuations in habitat suitability across months, seasons and years. Models based on long-term climate averages over-estimate availability of suitable habitat and species' climatic tolerances, masking species potential vulnerability to climate change. Our results demonstrate that dynamic approaches to distribution modelling, such as incorporating organism-appropriate temporal scales, improves understanding of species distributions

    The Development of Metal Oxide Chemical Sensing Nanostructures

    Get PDF
    This paper discusses sensor development based on metal oxide nanostructures and microsystems technology. While nanostructures such as nanowires show significant potential as enabling materials for chemical sensors, a number of significant technical challenges remain. This paper discusses development to address each of these technical barriers: 1) Improved contact and integration of the nanostructured materials with microsystems in a sensor structure; 2) Control of nanostructure crystallinity to allow control of the detection mechanism; and 3) Widening the range of gases that can be detected by fabricating multiple nanostructured materials. A sensor structure composed of three nanostructured oxides aligned on a single microsensor has been fabricated and tested. Results of this testing are discussed and future development approaches are suggested. It is concluded that while this work lays the foundation for further development, these are the beginning steps towards realization of repeatable, controlled sensor systems using oxide based nanostructures

    Fingerprinting fluid source in calcite veins: combining LA-ICP-MS U-Pb calcite dating with trace elements and clumped isotope palaeothermometry

    Get PDF
    Application of geochemical proxies to vein minerals - particularly calcite - can fingerprint the source of fluids controlling various important geological processes from seismicity to geothermal systems. Determining fluid source, e.g. meteoric, marine, magmatic or metamorphic waters, can be challenging when using only trace elements and stable isotopes as different fluids can have overlapping geochemical characteristics, such as δ18O. In this contribution we show that by combining the recently developed LA-ICP-MS U-Pb calcite geochronometer with stable isotopes (including clumped isotope palaeothermometry) and trace element analysis, the fluid source of veins can be more readily determined. Calcite veins hosted in the Devonian Montrose Volcanic Formation at Lunan Bay in the Midland Valley Terrane of Central Scotland were used as a case study. δD values of fluid inclusions in the calcite, and parent fluid δ18O values reconstructed from clumped isotope palaeothermometry, gave values which could represent a range of fluid sources: metamorphic or magmatic fluids, or surface waters which had undergone much fluid-rock interaction. Trace elements showed no distinctive patterns and shed no further light on fluid source. LA-ICP-MS U-Pb dating determined the vein calcite precipitation age – 318±30 Ma – which rule out metamorphic or magmatic fluid sources as no metamorphic or magmatic activity was occurring in the area at this time. The vein fluid source was therefore a surface water (meteoric based on paleogeographic reconstruction) which had undergone significant water-rock interaction. This study highlights the importance of combining the recently developed LA-ICP-MS U-Pb calcite geochronometer with stable isotopes and trace elements to help determine fluid sources of veins, and indeed any geological feature where calcite precipitated from a fluid that may have resided in the crust for a period of time (e.g. fault precipitates or cements)

    New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Get PDF
    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology lubrication task because of their potential for superior friction and wearf properties in air and in an ultrahigh vacuum, spacelike environment. At the NASA Glenn Research Center, two-phase oxide ceramic eutectics, Al2O3/ZrO2(Y2O3), were directionally solidified using the laser-float-zone process, and carbon nanotubes were synthesized within a high-temperature tube furnace at 800 C. Physical vapor deposition was used to coat all quartz substrates with 5-nm-thick iron as catalyst and bondcoat, which formed iron islands resembling droplets and serving as catalyst particles on the quartz. A series of scanning electron micrographs showing multiwalled carbon nanotubes directionally grown as aligned "nanograss" on quartz is presented. Unidirectional sliding friction eperiments were conducted at Glenn with the two-layered CNT coatings in contact with the two-phase Al2O3/ZrO2(Y2O3) eutectics in air and in ultrachigh vacuum. The main criteria for judging the performance of the materials couple for solid lubrication and antistick applications in a space environment were the coefficient of friction and the wear resistance (reciprocal of wear rate), which had to be less than 0.2 and greater than 10(exp 5) N(raised dot)/cubic millimetes, respectively, in ultrahigh vacuum. In air, the coefficient of friction for the CNT coatings in contact with Al2O3/ZrO2 (Y2O3) eutectics was 0.04, one-fourth of that for quartz. In an ultrahigh vacuum, the coefficient of friction for CNT coatings in contact with Al2O3/ZrO2 (Y2O3) was one-third of that for quartz. The two-phase Al2O3/ZrO2 (Y2O3) eutectic coupled with the two-layered CNT coating met the coefficient of friction and wear resistance criteria both in air and in an ultrahigh vacuum, spacelike environment. This material's couple can dramatically improve the stiction (or adhesion), friction, and wear resistance of the contacting surfaces, which are major issues for microdevices and micromachines

    Regional seasonality of fire size and fire weather conditions across Australia's northern savanna

    Get PDF
    Australia's northern savannas have among the highest fire frequencies in the world. The climate is monsoonal, with a long, dry season of up to 9 months, during which most fires occur. The Australian Government's Emissions Reduction Fund allows land managers to generate carbon credits by abating the direct emissions of CO2 equivalent gases via prescribed burning that shifts the fire regime from predominantly large, high-intensity late dry season fires to a more benign, early dry season fire regime. However, the Australian savannas are vast and there is significant variation in weather conditions and seasonality, which is likely to result in spatial and temporal variations in the commencement and length of late dry season conditions. Here, we assess the temporal and spatial consistency of the commencement of late dry season conditions, defined as those months that maximise fire size and where the most extreme fire weather conditions exist. The results demonstrate that significant yearly, seasonal and spatial variations in fire size and fire weather conditions exist, both within and between bioregions. The effective start of late dry season conditions, as defined by those months that maximise fire size and where the most extreme fire weather variables exist, is variable across the savannas

    High-Voltage Droplet Dispenser Developed

    Get PDF
    Various techniques have been applied to deploying individual droplets for many applications, such as the study of the combustion of liquid fuels. Isolated droplet studies are useful in that they allow phenomena to be studied under well-controlled and simplified conditions. A high-voltage droplet dispenser has been developed that is extremely effective in dispensing a wide range of droplets. The dispenser is quite unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release the droplet. The droplet is deployed from the end of a needle. A flat-tipped, stainless steel needle attached to a syringe dispenses a known value of liquid that hangs on the needle tip. Somewhat below the droplet is an annular ring electrode. A bias voltage, followed by a voltage pulse, is applied to attract the droplet sufficiently to pull it off the needle. The droplet and needle are oppositely charged relative to the annular electrode. The needle is negatively charged, and the annular ring is positively charged
    corecore