485 research outputs found

    Yet another surprise in the problem of classical diamagnetism

    Get PDF
    The well known Bohr-van Leeuwen Theorem states that the orbital diamagnetism of classical charged particles is identically zero in equilibrium. However, results based on real space-time approach using the classical Langevin equation predicts non-zero diamagnetism for classical unbounded (finite or infinite) systems. Here we show that the recently discovered Fluctuation Theorems, namely, the Jarzynski Equality or the Crooks Fluctuation Theorem surprisingly predict a free energy that depends on magnetic field as well as on the friction coefficient, in outright contradiction to the canonical equilibrium results. However, in the cases where the Langevin approach is consistent with the equilibrium results, the Fluctuation Theorems lead to results in conformity with equilibrium statistical mechanics. The latter is demonstrated analytically through a simple example that has been discussed recently.Comment: 6 pages, 6 figure

    Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain

    Full text link
    The interaction of coherent magnetization rotation with a system of two-level impurities is studied. Two different, but not contradictory mechanisms, the `slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system of integro-differential equations for the magnetization. In the case that the impurity relaxation rate is much greater than the magnetization precession frequency, these equations can be written in the form of the Landau-Lifshitz equation with damping. Thus the damping parameter can be directly calculated from these microscopic impurity relaxation processes

    Bohr-van Leeuwen theorem and the thermal Casimir effect for conductors

    Full text link
    The problem of estimating the thermal corrections to Casimir and Casimir-Polder interactions in systems involving conducting plates has attracted considerable attention in the recent literature on dispersion forces. Alternative theoretical models, based on distinct low-frequency extrapolations of the plates reflection coefficient for transverse electric (TE) modes, provide widely different predictions for the magnitude of this correction. In this paper we examine the most widely used prescriptions for this reflection coefficient from the point of view of their consistency with the Bohr-van Leeuwen theorem of classical statistical physics, stating that at thermal equilibrium transverse electromagnetic fields decouple from matter in the classical limit. We find that the theorem is satisfied if and only if the TE reflection coefficient vanishes at zero frequency in the classical limit. This criterion appears to rule out some of the models that have been considered recently for describing the thermal correction to the Casimir pressure with non-magnetic metallic plates.Comment: 12 pages, no figures. Presentation has been significantly improved, more references included. The new version matches the one accepted for publication in Phys. Rev.

    Slow spin relaxation in a highly polarized cooperative paramagnet

    Full text link
    We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected low frequency dependence (< 1 Hz) of this peak, suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.Comment: Accepted for publication in Physical Review Letter

    Kinematic parameters and oxygen uptake kinetics during sub-maximal exercise in swimming

    Get PDF
    Trabalho apresentado no 19 th Annual Congress of the European College of Sport Science, 2-5 julho 2014, AmesterdĂŁo, Holand

    The distance-time relationship and oxygen uptake kinetics in swimming

    Get PDF
    Trabalho apresentado no 19th Annual Congress of the European College of Sport Science, 2-5 julho, AmesterdĂŁo, Holand

    Chaos and Semiclassical Limit in Quantum Cosmology

    Full text link
    In this paper we present a Friedmann-Robertson-Walker cosmological model conformally coupled to a massive scalar field where the WKB approximation fails to reproduce the exact solution to the Wheeler-DeWitt equation for large Universes. The breakdown of the WKB approximation follows the same pattern than in semiclassical physics of chaotic systems, and it is associated to the development of small scale structure in the wave function. This result puts in doubt the ``WKB interpretation'' of Quantum Cosmology.Comment: 14 pages in LaTex (RevTex), 6 figure

    Adiabatic orientation of rotating dipole molecules in an external field

    Get PDF
    The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric-top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their "adiabatic-entry" orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and "adiabatic-entry" ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators are illustrated and identified.Comment: 18 pages, 4 figure

    Prediction of genetic values for feed intake from individual body weight gain and total feed intake of the pen

    Get PDF
    Records of individual feed intake (FI) and BW gain (GN) were obtained from the Germ Plasm Evaluation (GPE) program at US Meat Animal Research Center (USU.S. Meat Animal Research Center). Animals were randomly assigned to pens. Only pens with 6 to 9 steers (n = 289) were used for this study (data set 1). Variance components and genetic parameters were estimated using data set 1. Estimated genetic values (EGV) for FI were calculated by 5 methods using single and 2-trait analyses: 1) individual FI and individual GN, 2) individual FI alone, 3) 2-trait with individual GN but with FI missing, 4) individual GN and pen total FI, and 5) pen total FI alone. Analyses were repeated but with some of the same records assigned artificially to 36 pens of 5 and 4 paternal half sibs per pen (data sets 2 and 3). Models included year as a fixed factor and birth and weaning weights, age on test, and days fed as covariates. Estimates of heritability were 0.42 ± 0.16 and 0.34 ± 0.17 for FI and GN. The estimate of the genetic correlation was 0.57 ± 0.23. Empirical responses to selection were calculated as the average EGV for the top and bottom 10% based on rank for each method but with EGV from method 1 substituted for the EGV on which ranking was based. With data set 1, rank correlations between EGV from method 1 and EGV from methods 2, 3, 4, and 5 were 0.99, 0.53, 0.32, and 0.15, respectively. Empirical responses relative to method 1 agreed with the rank correlations. Accuracy of EGV for method 4 (0.44) was greater than for method 3 (0.35) and for method 5 (0.29). Accuracies for methods 4 and 5 were greater than indicated by empirical responses and correlations with EGV from method 1. Comparisons of the 5 methods were similar for data sets 2 and 3. With data set 2, rank correlations between EGV from method 1 and EGV from methods 3, 4, and 5 were 0.47, 0.64, and 0.62. Average accuracies of 56, 75, and 75% relative to method 1 (0.67) generally agreed with the empirical responses to selection. As expected, accuracy using pen total FI and GN to obtain EGV for FI was greater than using GN alone. With data set 1, empirical response to selection with method 4 was one-third of that for method 1, although average accuracy was 65% of that for method 1. With assignment of 5 paternal half sibs to artificial pens, using pen total FI and individual GN was about 81% as effective for selection as using individual FI and GN to obtain EGV for FI and was substantially more effective than use of GN alone

    One-Loop Corrections to Bubble Nucleation Rate at Finite Temperature

    Full text link
    We present an evaluation of the 1-loop prefactor in the lifetime of a metastable state which decays at finite temperature by bubble nucleation. Such a state is considered in one-component phi^4 model in three space dimensions. The calculation serves as a prototype application of a fast numerical method for evaluating the functional determinants that appear in semiclassical approximations.Comment: DO-TH-93/18, 15 pages, 11 Figures available on request, LaTeX, no macros neede
    • …
    corecore